首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of DNA helix-coil subtransitions   总被引:2,自引:0,他引:2  
The kinetic analysis of individual helix-coil subtransitions were performed by comparing melting and renaturation profiles obtained at different temperature change rates. The duration of the three transition stages and its dependence on temperature and ionic strength were determined for a T7 phage DNA fragment. The obtained temperature dependence of the melting time for a stretch flanked by melted regions is in quantitative agreement with that predicted by the theory of slow processes (V.V. Anshelevich, A.V. Vologodskii, A.V. Lukashin, M.D. Frank-Kamenetskii, Biopolymers 23, 39 (1984)). The reasons are discussed for the increasing relaxation time of this stretch in the middle of its transition with decreasing ionic strength. The zipping kinetics of a melted region under essentially nonequilibrium conditions was examined for T7 fragment and pAO3 DNAs. The obtained temperature dependence of the zipping time is in quantitative agreement with calculations based on the theory of slow processes. The renaturation times of stretches flanked by helical regions proved fairly small even at a low ionic strength. These times are several orders of magnitude smaller than the renaturation times of the same stretches with one helical boundary. A formal application of the theory of slow processes failed to account for the small renaturation times of stretches that are zipped from both ends. This is probably due to the non-allowance for the changing entropy of the loop linking two helix-coil boundaries migrating towards each other. Slow processes have been revealed in the intramolecular melting of Col E1 DNA at a high ionic strength. The reason for the long relaxation time of one subtransition is the large size of the loop that separates the melting stretch from the helical part of the molecule. This result can be accounted for by the theory of slow processes.  相似文献   

2.
Abstract

The kinetic analysis of individual helix-coil subtransitions was performed by comparing melting and renaturation profiles obtained at different temperature change rates. The duration of the three transition stages and its dependence on temperature and ionic strength were determined for a T7 phage DNA fragment. The obtained temperature dependence of the melting time for a stretch flanked by melted regions is in quantitative agreement with that predicted by the theory of slow processes (V.V. Anshelevich, A.V. Vologodskii, A.V. Lukashin, M.D. Frank-Kamenetskii, Biopolymers 23, 39 (1984)). The reasons are discussed for the increasing relaxation time of this stretch in the middle of its transition with decreasing ionic strength.

The zipping kinetics of a melted region under essentially nonequilibrium conditions was examined for T7 fragment and pAO3 DNAs. The obtained temperature dependence of the zipping time is in quantitative agreement with calculations based on the theory of slow processes.

The renaturation times of stretches flanked by helical regions proved fairly small even at a low ionic strength. These times are several orders of magnitude smaller than the renaturation times of the same stretches with one helical boundary. A formal application of the theory of slow processes failed to account for the small renaturation times of stretches that are zipped from both ends. This is probably due to the non-allowance for the changing entropy of the loop linking two helix-coil boundaries migrating towards each other.

Slow processes have been revealed in the intramolecular melting of Col E1 DNA at a high ionic strength. The reason for the long relaxation time of one subtransition is the large size of the loop that separates the melting stretch from the helical part of the molecule. This result can be accounted for by the theory of slow processes.  相似文献   

3.
The effect of ionic strength (I) on substrate-induced spin transitions and cooperativity in cytochrome P450eryF was studied. At a saturating concentration of 1-pyrenebutanol (1-PB) increasing ionic strength in the 0.06-1.2 M range promotes the formation of the high-spin state of P450, which fraction increases from 26% at 0.06 M to 75% at 1.2 M. This effect was associated with a considerable decrease in cooperativity as revealed in the 1-PB-induced spin shift. While P450eryF exhibits distinct positive cooperativity (S(50) = 8.3 microM, n = 2.4) with this substrate at low ionic strength (I = 0.06 M), n decreases to 1.2 (S(50) = 3.2 microM) at I = 0.66 M. Increasing ionic strength also increases the distance between the first (effector) molecule of 1-PB and the heme, as detected by the changes in the efficiency of FRET from 1-PB to the heme. The modification of Cys(154) with 7-(diethylamino)-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM) largely suppresses these effects of ionic strength and causes a prominent decrease in the cooperativity. The same effect was observed when Cys(154) was substituted with isoleucine. Importantly, Cys(154) is located at the C-terminal end of helix E and is surrounded by salt bridges formed by arginine, glutamate, and aspartate residues located in helices D, E, F, and G. Our results suggest that the binding of the first substrate molecule causes an important conformational transition in the P450eryF that facilitates the substrate-induced spin shift. This transition is apparently accompanied by dissociation or rearrangement of several salt bridges in the proximity of Cys(154) and modulates accessibility and hydration of the heme pocket.  相似文献   

4.
The thermal denaturation of four oligonucleotides, viz. 3'-d(AT)5pO(CH2)6Opd(AT)5-3' (parAT), 3'-d(AT)5pO(CH2)5Opd(AT)5-5' (antiAT), 3'-d(A)10pO(CH2)6Op(T)10-3' (parA-T) and 3'd(A)10pOX X (CH2)6Opd(T)10-5' (antiA-T) in 0.01 M phosphate buffer at pH 7 in presence 0.1, 0.25, 0.5 and 1.0 M NaCl have been studied. It was shown that at lower temperature (0-20 degrees C) all oligomeres exist as complexes of two (canonic duplex) or four (eight) molecules of oligonucleotides, but at higher temperature (30-70 degrees C)- as hairpins with parallel (parAT and parA-T) of antiparallel (antiAT and antiA-T) orientation of chains. Thermodinamic parameters of separated strands-hairpins and hairpins--"low temperature complexes" transition were computated from the melting curves [A260 (T)] by nonlinear regression. AntiA-T was shown by ethidium bromide binding to exist at low strength (0.01 M phosphate buffer without NaCl) as four-stranded complex from two antiparallel double stranded helices parallely oriented and bonded by satisfy hydrogen-bond of groups not involved in WC-pairing. At higher ionic strength the two of such tetramers was conjugated by hydrophobic interaction into octamers. We speculate that four-stranded complexes serves to bring together, and zipper up two antiparallel double stranded helices at replication of DNA, cross-over of gomologues chromosomes and other biochemically important processes.  相似文献   

5.
The distribution of activity of the elongation factors EF-1 and EF-2 among the components of rabbit reticulocyte lysate separated by sucrose density gradient centrifugation was studied. At low ionic strength (0.01 M KCl) about 30% of the EF-1 activity was found in polyribosomes. At moderate ionic strength (0.1 M KCl) the EF-1 activity was absent in the polyribosomes. An addition of RNA excess to the lysate prior to centrifugation at low ionic strength resulted in elimination of the EF-1 activity from the polyribosomes. This indicates that EF-1 is reversibly bound to the polyribosomes and that EF-1 may be retained on them due to interaction with RNA of polysomes mediated by its RNA-binding site. After dissociation of polyribosomes containing EF-1 in the presence of EDTA and subsequent fractionation of the dissociation products at low ionic strength (0.01 M KCl) the EF-1 activity was revealed in the ribosomal subparticles (predominantly in 60S). At 0.1 M KCl EF-1 mainly sedimented in the zone of distribution of polyribosomal informosomes. The elongation factor EF-2 was not revealed in polyribosomes during lysate centrifugation even at low ionic strength which corresponds to its lower affinity for RNA.  相似文献   

6.
Weight-average elution volumes of sulphatase A (an arylsulphate sulphohydrolase, EC 3.1.6.1) from Sephadex G-200 have been determined as functions of protein concentration, pH, ionic strength and temperature. The results are used to calculate the apparent association equilibrium constants for tetramer formation and the associated standard-state thermodynamic parameters. While the apparent association constant decreased from 10(28) to 10(21) M-3 on increasing the pH from 4.5 to 5.6 at ionic strength 0.1, at any particular pH value studied it was relatively insensitive to temperature variation so that deltaH is close to zero and tetramer formation in solution is associated with a positive entropy change. At pH 5.0, increasing the ionic strength from 0.1 to 2 decreased the association constant by a factor of 100. Methylumbelliferone sulphate has no effect on the association of sulphatase A. The equilibrium results are used to define the degree of association of sulphatase A likely to encountered in experiments designed to elucidate its kinetic properties. In the liver lysosome, the tetramer is probably the dominant species. The monomer and tetramer of sulphatase A have similar, or identical, specific activities with nitrocatechol sulphate and 4-methylumbelliferone sulphate as substrates. With nitrocatechol sulphate, sulphatase A shows Michaelis kinetics under conditions where the monomer is the dominant species and non-Michaelis kinetics where the tetramer is dominant. There is apparently a negative cooperativity between the monomer units in the tetramer. In 2 mM sodium taurodeoxycholate and 0.035 M MnCl2, but not in 0.1 M NaCl, the tetramer shows Michaelis kinetics. This is not due to dissociation of the tetramer. The critical micellar concentration of sodium taurodeoxycholate is about 0.8 mM in both 0.1 M NaCl and 0.035 M McCl2 but the aggregation number is greater in the latter.  相似文献   

7.
The interaction of ethidium with synthetic DNA and RNA double-stranded polymers at 0.01 M ionic strength, pH 7.0, has been studied by fluorimetry at low drug to nucleotide ratios. Binding constants have been calculated assuming an excluded-neighbouring site model for the interaction of ethidium with double-stranded polymers. The values obtained are poly d(AT).poly d(AT), 9.5 X 10(6) M-1; poly dA.poly dT, 6.5 X 10(5) M-1; poly d(GC).poly d(GC), 9.9 X 10(6) M-1; poly dG,poly dC, 4.5 X 1-(6) M-1; poly d(AC); poly d(GT), 9.8 X 10(6) M-1; poly d(AG).poly d(CT), 1.3 X 10(6) M-1; poly rA.poly rU, 4.1 X 10(7) M-1. The displacement of ethidium from poly d(AT).poly d(AT) by 9-aminoacridine and an acridine-containing antitumor agent (NSC 156303; 4'-(9-acridinylamino)methanesulphon-m-anisidide) has also been examined.  相似文献   

8.
M Takahashi  B Blazy  A Baudras 《Biochemistry》1980,19(22):5124-5130
The binding of adenosine cyclic 3',5'-monophosphate (cAMP) and guanosine cyclic 3',5'-monophosphate (cGMP) to the adenosine cyclic 3',5'-monophosphate receptor protein (CRP) from Escherichia coli was investigated by equilibrium dialysis at pH 8.0 and 20 degrees C at different ionic strengths (0.05--0.60 M). Both cAMP and cGMP bind to CRP with a negative cooperativity that is progressively changed to positive as the ionic strength is increased. The binding data were analyzed with an interactive model for two identical sites and site/site interactions with the interaction free energy--RT ln alpha, and the intrinsic binding constant K and cooperativity parameter alpha were computed. Double-label experiments showed that cGMP is strictly competitive with cAMP, and its binding parameters K and alpha are not very different from that for cAMP. Since two binding sites exist for each of the cyclic nucleotides in dimeric CRP and no change in the quaternary structure of the protein is observed on binding the ligands, it is proposed that the cooperativity originates in ligand/ligand interactions. When bound to double-stranded deoxyribonucleic acid (dsDNA), CRP binds cAMP more efficiently, and the cooperativity is positive even in conditions of low ionic strength where it is negative for the free protein. By contrast, cGMP binding properties remained unperturbed in dsDNA-bound CRP. Neither the intrinsic binding constant K nor the cooperativity parameter alpha was found to be very sensitive to changes of pH between 6.0 and 8.0 at 0.2 M ionic strength and 20 degrees C. For these conditions, the intrinsic free energy and entropy of binding of cAMP are delta H degree = -1.7 kcal . mol-1 and delta S degree = 15.6 eu, respectively.  相似文献   

9.
I Feldman  D C Kramp 《Biochemistry》1978,17(8):1541-1547
A study of the effect of varying ionic strength on the glucose-induced quenching of tryptophan fluorescence of hexokinase isoenzymes A(P-I) and B(P-II) was carried out at pH 8.3 and pH 5.5. At p/ 8.3 both isoenzymes gave apparently linear Scatchard-type data plots even with protein concentrations and ionic strengths for which both dimeric and monomeric forms of hexokinase coexist in signiciant amounts. Taking inco account a 1% accuracy in the experimental measurements, we concluded that the intrinsic dissociation constants K(M) and K(D), for the binding of glucose to the monomeric and dimeric forms of HkB, are within a factor of two of each other, i.e. K(D)/K(M) less than or equal to 2. The values of K(M), estimated from the apparent K, were so greatly influenced by ionic strength that it is clear that it is meaningless to compare K(M) and K(D) values measured at different ionic strengths as has been done in the literature. Curvature in the pH 5.5. fluorescence-quenching plots for relatively low ionic strengths demonstrates cooperativity for glucose-binding to the dimer, positive for HkA but negative for HkB. In contrast, the binding is relatively non-cooperative at high ionic strength at this pH. These results were attributed to the well known effect of salt-neutralization of side chain electrical charges on the flexibility and compactness of proteins.  相似文献   

10.
The binding of lactose repressor to poly d(A-T) at low ionic strength has been investigated by heat denaturation. The poly d(A-T) melting is monitored by optical density and the protein melting by circular dichroism. From the modification of the poly d(A-T) melting curve we estimate a maximum binding ratio of about one tetrameric repressor to about 20 bases pairs. The repressor melting can be interpreted as a global shift from α to β structure of about 25 residues per subunit. The melting curves of poly d(A-T) and repressor have not a shape easy to interpret; nevertheless both show a cooperative transition in the same temperature range where we can evaluate that about 3.8 aminoacid residues shift from α to β structure when 1 basespair melt.  相似文献   

11.
The capacity to assume a left-handed conformation and the thermodynamics of loop formation in concentrated aqueous NaClO4 have been investigated for the following palindromic sequences: d-(CGCGCGAAAAACGCGCG) (A5), d(CGCGCGTTTTTCGCGCG) (T5), d(CGCGCGTACGCGCG) (TA), and d(CGCGCGATCGCGCG) (AT). The results show that (a) each oligomer assumes a Z conformation upon exposure to increasing NaClO4 concentrations; the salt concentration at the transition midpoint is 1.8 M for both A5 and T5 and 3 and 3.5 M for TA and AT, respectively; (b) in high salt the four oligomers exist, over a wide range of nucleotide concentrations (up to 10(-3) M) and of temperature (greater than 0 degrees C), as unimolecular hairpin structures; (c) hairpins TA and AT exhibit, in buffer A, a lower thermal stability with respect to A5 and T5 (delta T about 16 degrees C), contrary to what is observed at low ionic strength; (d) on hairpin formation, the enthalpic term is about -52 kcal/mol for the two 17-mers and -38 kcal/mol for the two 14-mers, while the change in entropy is found to be around -150 eu for A5 and T5 and -115 eu for TA and AT. This thermodynamic picture suggests that a two-residue loop for TA and AT, found at low ionic strength [see preceding paper (Xodo, L.E., Manzini, G., Quadrifoglio, F., van der Marel, G.A., & van Boom, J.H. (1988) Biochemistry (preceding paper in this issue)], is substituted by a longer one including two additional residues from a missing dC.dG base pairing at the top of the stem.  相似文献   

12.
Electrostatic contributions to the binding of Ca2+ in calbindin D9k   总被引:7,自引:0,他引:7  
A set of accurate experimental data is provided for Ca2+ ion binding to calbindin D9k, a protein in the calmodulin superfamily of intracellular regulatory proteins. The study comprises both the role of protein surface charges and the effects of added electrolyte. The two macroscopic Ca2(+)-binding constants K1 and K2 are determined for the wild-type and eight mutant calbindins in 0, 0.05, 0.10, and 0.15 M KCl from titrations in the presence of Quin 2 or 5,5'-Br2BAPTA. The mutations involve replacement of surface carboxylates (of Glu17, Asp19, Glu26, and Glu60) with the corresponding amides. It is found that K1K2 may decrease by a factor of up to 2.5 x 10(5) (triple mutant in 0.15 M KCl as compared to the wild-type protein in 0 M KCl). Ca2(+)-binding constants of the individual Ca2+ sites (microscopic binding constants) have also been determined. The positive cooperativity of Ca2+ binding, previously observed at low salt concentration [Linse et al. (1987) Biochemistry 26, 6723-6735], is also present at physiological ionic strength and amounts to 5 kJ.mol-1 at 0.15 M KCl. The electrolyte concentration and some of the mutations are found to affect the cooperativity. 39K NMR studies show that K+ binds weakly to calbindin. Two-dimensional 1H NMR studies show, however, that potassium binding does not change the protein conformation, and the large effect of KCl on the Ca2+ affinity is thus of unspecific nature. Two-dimensional 1H NMR has also been used to assess the structural consequences of the mutations through assignments of the backbone NH and C alpha H resonances of six mutants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The bis(terpyridine)cobalt(II), Co(terpy)2(2+), reduction of cytochrome c peroxidase compound I, CcP-I, has been investigated using stopped-flow techniques as a function of ionic strength in pH 7.5 buffers at 25 degrees C. Co(terpy)2(2+) initially reduces the Trp191 radical site in CcP-I with an apparent second-order rate constant, k2, equal to 6.0+/-0.4x10(6) M(-1)s(-1) at 0.01 M ionic strength. A pseudo-first-order rate constant of 480 s(-1) was observed for the reduction of CcP-I by 79 microM Co(terpy)2(2+) at 0.01 M ionic strength. The one-electron reduction of CcP-I produces a second enzyme intermediate, CcP compound II (CcP-II), which contains an oxyferryl, Fe(IV), heme. Reduction of the Fe(IV) heme in CcP-II by Co(terpy)2(2+) shows saturation kinetics with a maximum observed rate constant, k3max, of 24+/-2 s(-1) at 0.01 M ionic strength. At low reductant concentrations, the apparent second-order rate constant for Co(terpy)2(2+) reduction of CcP-II, k3, is 1.2+/-0.5x10(6) M(-1) s-1. All three rate constants decrease with increasing ionic strength. At 0.10 M ionic strength, values of k2, k3, and k3max decrease to 6.0+/-0.8x10(5) M(-1) s(-1), 1.2+/-0.5x10(5) M(-1) s(-1), and 11+/-3 s(-1), respectively. Both the product, Co(terpy)2(3+), and ferricytochrome c inhibit the rate of Co(terpy)2(2+) reduction of CcP-I and CcP-II. Gel-filtration studies show that a minimum of two Co(terpy)2(3+) molecules bind to the native enzyme in low ionic strength buffers.  相似文献   

14.
Chemical shifts of base and H1' protons of the single-stranded hexamers d(ATTACC) and d(GGTAAT), of the 1:1 mixtures of these complementary hexamers, and of the self-complementary dodecamer d(ATTACCGGTAAT) were measured at various temperatures in aqueous solution. Four different sample concentrations were used in the case of the dodecamer and of the mixture of the complementary hexamers; the individual hexamers were measured at two different DNA concentrations. Absorbance temperature profiles at five different NaCl concentrations were measured for the dodecamer in order to quantify the effect of the ionic strength on the duplex formation. Under suitable conditions of nucleotide concentration, temperature, and ionic strength, the dodecamer adopts either a B-DNA duplex or a hairpin-loop structure. Chemical shift vs temperature profiles, constructed for all samples, were used to obtain thermodynamic parameters either for the various stacking interactions in the single strands or for the duplex or the hairpin-loop formation. In the analysis of the duplex formation of the hexamers, a two-state approach appeared too simple, because systematic deviations were revealed. Therefore, a new three-state model (DUPSTAK) was developed. In order to investigate the magnitude of error arising from the use of the two-state approach in cases where the DUPSTAK model appears more appropriate, a series of test calculations was made. The magnitude of error in the enthalpy and in the entropy of duplex melting is found to depend linearly upon the actual melting temperature and not upon the individual delta Hd degrees and delta Sd degrees values. Thermodynamic analysis of the chemical shift vs temperature profiles in D2O solution (no added salt) yields an average Tmd value of 341 K (1M DNA) and delta Hd degrees of - 121 kJ.mol-1 for the dimer/random-coil transition of the hexamer duplex d(ATTACC).d(GGTAAT). For the duplex in equilibrium random-coil transition of the 12-mer d(ATTACCGGTAAT) an average Tmd value of 336 K (1M DNA) and delta Hd degrees of -372 kJ.mol-1 are found. The hairpin/random-coil transition of d(ATTACCGGTAAT) is characterized by a rather large delta Hh degrees value, -130 kJ.mol-1, and an average Tmh value of 304 K.  相似文献   

15.
Thermal denaturation of four oligonucleotides, viz. 3'-d(AT)5pO(CH2)6Opd(AT)5-3'(par(AT], 3'-d(AT)5pO(CH2)6Opd(AT)5-5'(anti(AT],3'-d(A)10pO(CH2) 6Op(T)10-3'(par(A-T], and 3'-d(A)10pO(CH2)6Opd(T)10-5' (anti(A-T], was studied in 0.01 M phosphate buffer, pH 7, in the presence of 0.1, 0.25, 0.5 and 1.0 M NaCl. All the oligomers were found to exist at a lower temperature (0 to 20 degrees C) as complexes composed either of two oligomer molecules (a canonical duplex) or of more oligomer molecules whereas, at a higher temperature (30 to 70 degrees C), they formed hairpins with a parallel (par(AT) and par(A-T] or antiparallel (anti(AT) and anti(A-T) orientation of the chains. Melting curves (A260(T] were used to calculate thermodynamic parameters for the formation of hairpins and "low-temperature" duplexes. Experiments on ethidium bromide binding to the oligonucleotides have shown that the oligomer anti(A-T) exists, at a low ionic strength, as a four stranded complex ("quadruplex") contains two antiparallel helices, d(A).d(T), which have a parallel orientation and are bound to one another owing to the formation of additional hydrogen bonds between nucleic acid bases. The possible biological function of quadruplexes is discussed.  相似文献   

16.
In order to investigate the effects of temperature and ionic strength on the N-B-transition and the alkaline denaturation of the human serum albumin, the pH-dependences of fluorescence position and relative yield of Trp-24 and of protein bound dye ANS were measured. The measurements were carried out at temperatures from 10 to 45 degrees C and ionic strengths (NaCl) from 0.001 to 0.2. The pH-induced structural transitions have different realization in environments of tryptophanyl and tightly bound ANS. The alkaline denaturation does not change the Trp-214 fluorescence. The N-B-transition gives rise to the slight polarity and/or mobility lowering in the Trp-214 environment (the shorter-wave-length spectral shift). Increase in the temperature and ionic strength induces the shift of the transition midpoint from ca. 8 to 8.7 and reduces the spectral shift amplitude. At low ionic strengths, the new structural transition in the Trp-214 environment is observed at pH change from 6.7 to 5.7. This transition is not observable using ANS fluorescence. The N-B-transition is accompanied by an enhancement and longer-wavelength shift of the ANS fluorescence spectra. The transition midpoint is independent of temperature, but is shifted to lower pH values at a decrease of ionic strength value. At ionic strengths less than or equal to 0.01 the shorter-wavelength spectral shift is seen at pH from 7.5 to 9, which seems to reflect the disulfide B-A-isomerisation. The alkaline denaturation gives rise to the sharp quenching of ANS fluorescence, probably due to the ANS binding site decomposition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The ionization of 4-nitroimidazole to 4-nitroimidazolate was investigated as a function of ionic strength. The apparent pKa varies from 8.99 to 9.50 between 0.001 and 1.0 M ionic strength, respectively, at 25 degrees C. The ionic strength dependence of this ionization is anomalous. The binding of 4-nitroimidazole by horse metmyoglobin was studied between pH 5.0 and 11.5 and as a function of ionic strength between 0.01 and 1.0 M. The association rate constant is pH-dependent, varying from 24 M(-1)s(-1) at pH 5 to a maximum value of 280 M(-1)s(-1) at pH 9.5 and then decreasing to 10 M(-1)s(-1) at pH 11.5 in 0.1 M ionic strength buffers. The dissociation rate constant has a much smaller pH dependence, varying from 0.082 s(-1) at low pH to 0.035 s(-1) at high pH, with an apparent pKa of 6.5. The binding affinity of 4-nitroimidazole to horse metmyoglobin is about 2.5 orders of magnitude stronger than that for imidazole and this increased affinity is attributed to the much slower dissociation rate for 4-nitroimidazole compared to that of imidazole. Although the ionic strength dependence of the binding rate is small and secondary kinetic salt effects can account for the ionic strength dependence of the association rate constant, the pH dependence of the rate constants and microscopic reversibility arguments indicate that the anionic form of the ligand binds more rapidly to all forms of metmyoglobin than does the neutral form of the ligand. However, the spectrum of the complex is similar to model complexes involving neutral imidazole and not imidazolate. The latter observation suggests that the initial metmyoglobin/4-nitroimidazolate complex rapidly binds a proton and the neutral form of the bound ligand is stabilized, probably through hydrogen binding with the distal histidine.  相似文献   

18.
The adhesion of Pseudomonas fluorescens (ATCC 17552) to nonpolarized and negatively polarized thin films of gold was studied in situ by contrast microscopy using a thin-film electrochemical flow cell. The influence of the electrochemical potential was evaluated at two different ionic strengths (0.01 and 0.1 M NaCl; pH 7) under controlled flow. Adhesion to nonpolarized gold surfaces readily increased with the time of exposition at both ionic-strength values. At negative potentials (−0.2 and −0.5 V [Ag/AgCl-KCl saturated {sat.}]), on the other hand, bacterial adhesion was strongly inhibited. At 0.01 M NaCl, the inhibition was almost total at both negative potentials, whereas at 0.1 M NaCl the inhibition was proportional to the magnitude of the potential, being almost total at −0.5 V. The existence of reversible adhesion was investigated by carrying out experiments under stagnant conditions. Reversible adhesion was observed only at potential values very close to the potential of zero charge of the gold surface (0.0 V [Ag/AgCl-KCl sat.]) at a high ionic strength (0.1 M NaCl). Theoretical calculations of the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy for the bacteria-gold interaction were in good agreement with experimental results at low ionic strength (0.01 M). At high ionic strength (0.1 M), deviations from DLVO behavior related to the participation of specific interactions were observed, when surfaces were polarized to negative potentials.  相似文献   

19.
Binding of E.coli lac repressor to non-operator DNA*   总被引:4,自引:2,他引:2       下载免费PDF全文
It is shown by melting profile analysis of lac repressor-DNA complexes that repressor binds tightly and preferentially (relative to single-stranded DNA) to double-stranded non-operator DNA. This binding stabilizes the DNA against melting and the repressor against thermal denaturation. Analysis of the extent of stabilization and the rate of dissociation of repressor from non-operator DNA as a function of sodium ion concentration shows, in confirmation of other studies,(3,4) that the binding constant (K(RD)) is very ionic strength dependent; K(RD) increases from approximately 10(6) M(-1) at approximately 0.1 M Na(+) to values in excess of 10(10) M(-1) at 0.002 M Na(+). Repressor bound to non-operator DNA is not further stabilized against thermal denaturation by inducer binding, indicating that the inducer and DNA binding sites probably represent separately stabilized local conformations. Transfer melting experiments are used to measure the rate of dissociation of repressor from operator DNA. These experiments show that most of the ionic strength dependence of the binding constant is in the dissociation process; the estimated dissociation rate constant decreases from greater than 10(-1) sec(-1) at [Na(+)] >/= 0.02 M to less than 10(-4) sec(-1) at [Na(+)] 相似文献   

20.
Muscle cross-bridge kinetics in rigor and in the presence of ATP analogues.   总被引:11,自引:6,他引:5  
Recently we reported preliminary mechanical experiments on freshly skinned rabbit psoas fibers that suggested that while almost all of the cross-bridges are attached to actin in the presence of 4 mM adenyl-5'-yl-imidodiphosphate (AMP-PNP) (ionic strength, 0.13 M), there is an equilibrium between the attached and detached states, so that, in the presence of 4 mM AMP-PNP, fibers should not be able to maintain tension (Schoenberg, et al., 1984, in Contractile Mechanisms in Muscle, Pollack and Sugi, editors., Plenum Publishing Corp., NY). Since this suggestion was at variance with published results of Clarke and Tregear (1982, FEBS [Fed. Eur. Biochem. Soc.] Lett, 143:217), we reinvestigated the ability of rabbit psoas fibers to support tension following a 2-nm stretch in rigor and in the presence of the nucleotide analogues, PPi and AMP-PNP, for analogue concentrations ranging from 0.25 to 4 mM. We find that, whereas in rigor there is very little tension decay following a stretch, in 4 mM nucleotide analogue solution, the force generated by stretch quickly decays to zero. The force decay is not exponential; rather, it can be described by rate constants that range from approximately 0.1 to 100 s-1 in 4 mM PPi, and 0.01 to 10 s-1 in 4 mM AMP-PNP. This large range of decay rate constants may be partially related to the dependence of either analogue binding or cross-bridge dissociation upon strain, since we find that the rate constants for force decay decrease with decreasing size of stretch or with decrease of analogue concentration below the maximum studied (4 mM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号