首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-free extracts of Mycoplasma pneumoniae showed two distinct reduced nicotinamide adenine dinucleotide (NADH(2)) oxidase activities in the supernatant fraction. By ammonium sulfate fractionation and polyacrylamide gel electrophoresis, one activity not requiring flavine co-factors was precipitated by 50 to 70% ammonium sulfate concentration and identified with a slower-moving band on acrylamide gel electrophoresis; a second NADH(2) oxidase activity was flavine mononucleotide (FMN) dependent and associated with a more rapidly moving band; it could only be partially precipitated by ammonium sulfate concentrations ranging from 50 to 100%. Studies with alternate electron acceptors indicated the presence of a menadione, a 2,6-dichlorophenol indophenol and a very weak ferricyanide oxido-reductase activity, but no cytochrome c oxido-reductase, in the cell-free preparations. The NADH(2) oxidase activities of all fractions were relatively cyanide insensitive and were only minimally inhibited by flavoprotein and other respiratory chain inhibitors. H(2)O(2) formation was negligible unless FMN, but not flavine adenine dinucleotide (FAD), was added to the crude NADH(2) oxidase system; upon fractionation and electrophoresis, the H(2)O(2) formation was associated with the FMN-dependent, more rapidly moving NADH(2) oxidase band. This FMN-dependent NADH(2) oxidase-H(2)O(2) generating system may be a mechanism for the H(2)O(2) formation observed during glucose oxidation in the intact organism.  相似文献   

2.
SUMMARY: A strain of Acinetobacter Iwoffii , isolated from a stored sample of distilled water, hydrolysed acetylsalicylic acid to salicylic and acetic acids. It grew in mineral salts medium with either of these compounds as C source and NH4+ as N source. Experiments with whole cells and cell free extracts and the isolation of intermediates showed that acetylsalicylic acid was metabolized through salicylic acid, catechol, cis-cis -muconic acid, (+)-muconolactone and β-oxoadipic acid. The salicylate hydroxylase required NADH or NADPH as cofactor and 1 mole of O2 was taken up and 1 mole of CO2 evolved for each mole of salicylate oxidized. Catalytic quantities of flavine adenine dinucleotide (FAD) but not flavine mononucleotide (FMN) activated the enzyme. The cis-cis -muconate lactonizing enzyme was activated by Mn2+ and inhibited by EDTA.  相似文献   

3.
The net photosynthetic efficiency in C3 plants (such asrice, wheat and other major crops) can be decreased by30% due to the metabolism of photorespiration [1], inwhich glycolate oxidase (GO) serves as a key enzyme. Itis known that GO, with flavin mononucleotide (FMN) asa cofactor, belongs to flavin oxidase [2]. But it differs fromother flavoproteins in that FMN is loosely bound to itsapoprotein and there exists a dissociation balance betweenthem, which indicates that FMN probably regulate…  相似文献   

4.
The bifunctional flavin adenine dinucleotide synthetase (FADS) synthesizes the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) co-factors essential for the function of flavoproteins. The Staphylococcus aureus FADS (SaFADS) produces FMN from riboflavin (RF) by ATP:riboflavin kinase (RFK) activity at its C-terminal domain. The N-terminal domain converts FMN to FAD under a reducing environment by FMN:ATP adenylyltransferase (FMNAT) activity which is reversible (FAD pyrophosphorylase activity). Herein, we investigated the role of F26 residue of the 24-GFFD-28 motif of SaFADS FMNAT domain, mostly conserved in the reducing agent-dependent FADSs. The steady-state kinetics studies showed changes in the KmATP values for mutants, indicating that the F26 residue is crucial for the FMNAT activity. Further, the FMNAT activity of the F26S mutant was observed to be higher than that of the wild-type SaFADS and its other variants at lower reducing agent concentration. In addition, the FADpp activity was inhibited by an excess of FAD substrate, which was more potent in the mutants. The altered orientation of the F26 side-chain observed in the molecular dynamics analysis suggested its plausible involvement in stabilizing FMN and ATP substrates in their respective binding pockets. Also, the SaFADS ternary complex formed with reduced FMN exhibited significant structural changes in the β4n-β5n and L3n regions compared to the oxidised FMN bound and apo forms of SaFADS. Overall, our data suggests the functional role of F26 residue in the FMNAT domain of SaFADS.  相似文献   

5.
Allen, Emma G. (Downstate Medical Center, Brooklyn, N.Y.). Use of tetrazolium salts for electron transport studies in meningopneumonitis. I. Reduced nicotinamide adenine dinucleotide system. J. Bacteriol. 90:1505-1512. 1965.-Purified preparations of meningopneumonitis virus (MP) prepared from allantoic fluids of infected chick embryo reduce several tetrazolium salts in the presence of reduced nicotinamide adenine dinucleotide under both aerobic and anaerobic conditions. The pattern of reduction by MP differs from that seen in normal allantoic membrane homogenates, and is inhibited by several cations but not by KCN, atabrine, amytal, antimycin A, or 2,3-dimercaptopropanol (BAL). The reduction of cytochrome c by purified preparations of MP differs from its reduction of tetrazolium salts in that the cytochrome reaction is completely inhibited by BAL and partially inhibited by amytal, atabrine, and antimycin A. The cytochrome reductase of normal allantoic membrane preparations is completely inhibited by each of these compounds.  相似文献   

6.
The molecular steps of the electron transfer in the endoplasmic reticulum from the secreted proteins during their oxidation are relatively unknown. We present here that flavine adenine dinucleotide (FAD) is a powerful oxidizer of the oxidoreductase system, Ero1 and PDI, besides the proteins of rat liver microsomes and HepG2 hepatoma cells. Inhibition of FAD transport hindered the action of FAD. Microsomal membrane integrity was mandatory for all FAD-related oxidation steps downstream of Ero1. The PDI inhibitor bacitracin could inhibit FAD-mediated oxidation of microsomal proteins and PDI, but did not hinder the FAD-driven oxidation of Ero1. Our data demonstrated that Ero1 can utilize FAD as an electron acceptor and that FAD-driven protein oxidation goes through the Ero1-PDI pathway and requires the integrity of the endoplasmic reticulum membrane. Our findings prompt further studies to elucidate the membrane-dependent steps of PDI oxidation and the role of FAD in redox folding.  相似文献   

7.
UVA light (320-400 nm) has been shown to produce deleterious biological effects in tissue due to the generation of singlet oxygen by substances like flavins or urocanic acid. Riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), beta-nicotinamide adenine dinucleotide (NAD), and beta-nicotinamide adenine dinucleotide phosphate (NADP), urocanic acid, or cholesterol in solution were excited at 355 nm. Singlet oxygen was directly detected by time-resolved measurement of its luminescence at 1270 nm. NAD, NADP, and cholesterol showed no luminescence signal possibly due to the very low absorption coefficient at 355 nm. Singlet oxygen luminescence of urocanic acid was clearly detected but the signal was too weak to quantify a quantum yield. The quantum yield of singlet oxygen was precisely determined for riboflavin (PhiDelta = 0.54 +/- 0.07), FMN (PhiDelta = 0.51 +/- 0.07), and FAD (PhiDelta = 0.07 +/- 0.02). In aerated solution, riboflavin and FMN generate more singlet oxygen than exogenous photosensitizers such as Photofrin, which are applied in photodynamic therapy to kill cancer cells. With decreasing oxygen concentration, the quantum yield of singlet oxygen generation decreased, which must be considered when assessing the role of singlet oxygen at low oxygen concentrations (inside tissue).  相似文献   

8.
NADPH-cytochrome P-450 reductase releases FAD upon dilution into slightly acidic potassium bromide. Chromatography on high performance hydroxylapatite resolved the FAD-dependent reductase from holoreductase. The FAD dependence was matched by a low FAD content, with the ratio of FAD to FMN as low as 0.015. The aporeductase had negligible activity toward cytochrome c, ferricyanide, menadione, dichlorophenolindophenol, nitro blue tetrazolium, and an analogue of NADP, acetylpyridine adenine dinucleotide phosphate. A 4-min incubation in FAD reconstituted from one-half to all of the enzyme activity, as compared to the untreated reductase, depending upon the substrate. After a 2-h reconstitution, the reductase eluted from hydroxylapatite at the same location in the elution profile as did the untreated holoreductase. The reconstituted reductase had little flavin dependence, was nearly equimolar in FMN and FAD, and had close to the specific activity, per mol of flavin, of untreated reductase. The dependence upon FAD implies that FMN is not a competent electron acceptor from NADPH. Thus, the FAD site must be the only point of electron uptake from NADPH.  相似文献   

9.
Payne, W. J. (University of Georgia, Athens), and R. L. Todd. Flavin-linked dehydrogenation of ether glycols by cell-free extracts of a soil bacterium. J. Bacteriol. 91:1533-1536. 1966.-Cell-free extracts of bacterium TEG-5 grown on tetraethylene glycol dehydrogenated a variety of ether glycols and nonylphenoxy and secondary alcohol ethoxy derivatives. Nicotinamide nucleotides did not serve as electron acceptors, but ferricyanide was effective. Dialysis of crude extract depressed activity with tetraethylene glycol, which was restored then by flavine adenine dinucleotide (FAD) or boiled extract supernatant fluid (BES) but not by other flavins. Precipitatation of extract protein at pH 4.0 at 80% ammonium sulfate saturation dissociated FAD and yielded an inactive fraction. Activity was restorable by FAD and BES but not by other flavins. Ethylene glycol was not dehydrogenated by the acid ammonium sulfate fraction with FAD. Atabrine inhibited tetraethylene glycol oxidation, and the inhibition was relieved by FAD but not by other flavins. Tergitols which have sulfated ethoxy side chains on secondary alcohols were not dehydrogenated, but those with free ethoxy side chains on identical alcohols were.  相似文献   

10.
Alpha-glycerophosphate oxidase in Streptococcus faecium F 24   总被引:1,自引:0,他引:1       下载免费PDF全文
alpha-Glycerophosphate oxidase, in a strain of Streptococcus faecium, was found to be adaptive to aerated conditions of growth. The enzyme was purified and found to mediate electron transfer from alpha-glycerophosphate to O(2), with the production of stoichiometric concentrations of H(2)O(2) and dihydroxyacetone phosphate. The enzyme is an anionic flavoprotein, with flavine adenine dinucleotide as the apparent prosthetic group. By manometric methods, a K(m) of 6 x 10(-3)m, with reference to substrate concentration, was obtained. An active reduced nicotinamide adenine dinucleotide diaphorase was closely associated with this enzyme in chromatographic mobility on ECTEOLA-cellulose. The purified alpha-glycerophosphate oxidase was not inhibited by KCN, azide, or sulfhydryl reagents, nor was it stimulated by alpha-lipoate, yeast extract, or other supplements.  相似文献   

11.
Photochemical reactivity of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) toward thymidine glycol (dTg) has been investigated. Fluorescence intensity of FAD was enhanced as increasing the concentration of dTg, suggesting that adenosine moiety of FAD interacts with dTg. However, photoreduction of dTg using reduced form of FAD gave repaired thymidine in almost the same yield as when reduced FMN was used alternatively, and thus such interaction seems to have no effect on the reduction. Oligodeoxynucleotides containing dTg were also photochemically repaired by reduced form of flavins in different yields depending on the sequence, which could be related to electron affinity of the nucleobases in DNA.  相似文献   

12.
Involvement of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) in cellular homeostasis has been well established for tissues other than the retina. Here, we present an optimized method to effectively extract and quantify FAD and FMN from a single neural retina and its corresponding retinal pigment epithelium (RPE). Optimizations led to detection efficiency of 0.1 pmol for FAD and FMN while 0.01 pmol for riboflavin. Interestingly, levels of FAD and FMN in the RPE were found to be 1.7- and 12.5-fold higher than their levels in the retina, respectively. Both FAD and FMN levels in the RPE and retina gradually decline with age and preceded the age-dependent drop in the functional competence of the retina as measured by electroretinography. Further, quantifications of retinal levels of FAD and FMN in different mouse models of retinal degeneration revealed differential metabolic requirements of these two factors in relation to the rate and degree of photoreceptor degeneration. We also found twofold reductions in retinal levels of FAD and FMN in two mouse models of diabetic retinopathy. Altogether, our results suggest that retinal levels of FAD and FMN can be used as potential markers to determine state of health of the retina in general and more specifically the photoreceptors.  相似文献   

13.
Quinone reductase 2 (NQO2) is a broadly expressed enzyme implicated in responses to a number of compounds, including protein kinase inhibitors, resveratrol, and antimalarial drugs. NQO2 includes a flavin adenine dinucleotide (FAD) cofactor, but X-ray crystallographic analysis of human NQO2 expressed in Escherichia coli showed that electron density for the isoalloxazine ring of FAD was weak and there was no electron density for the adenine mononucleotide moiety. Reversed-phase high-performance liquid chromatography (HPLC) of the NQO2 preparation indicated that FAD was not present and only 38% of the protomers contained flavin mononucleotide (FMN), explaining the weak electron density for FAD in the crystallographic analysis. A method for purifying NQO2 and reconstituting with FAD such that the final content approaches 100% occupancy with FAD is presented here. The enzyme prepared in this manner has a high specific activity, and there is strong electron density for the FAD cofactor in the crystal structure. Analysis of NQO2 crystal structures present in the Protein Data Bank indicates that many may have sub-stoichiometric cofactor content and/or contain FMN rather than FAD. This method of purification and reconstitution will help to optimize structural and functional studies of NQO2 and possibly other flavoproteins.  相似文献   

14.
The FAD1 gene of Saccharomyces cerevisiae has been selected from a genomic library on the basis of its ability to partially correct the respiratory defect of pet mutants previously assigned to complementation group G178. Mutants in this group display a reduced level of flavin adenine dinucleotide (FAD) and an increased level of flavin mononucleotide (FMN) in mitochondria. The restoration of respiratory capability by FAD1 is shown to be due to extragenic suppression. FAD1 codes for an essential yeast protein, since disruption of the gene induces a lethal phenotype. The FAD1 product has been inferred to be yeast FAD synthetase, an enzyme that adenylates FMN to FAD. This conclusion is based on the following evidence. S. cerevisiae transformed with FAD1 on a multicopy plasmid displays an increase in FAD synthetase activity. This is also true when the gene is expressed in Escherichia coli. Lastly, the FAD1 product exhibits low but significant primary sequence similarity to sulfate adenyltransferase, which catalyzes a transfer reaction analogous to that of FAD synthetase. The lower mitochondrial concentration of FAD in G178 mutants is proposed to be caused by an inefficient exchange of external FAD for internal FMN. This is supported by the absence of FAD synthetase activity in yeast mitochondria and the presence of both extramitochondrial and mitochondrial riboflavin kinase, the preceding enzyme in the biosynthetic pathway. A lesion in mitochondrial import of FAD would account for the higher concentration of mitochondrial FMN in the mutant if the transport is catalyzed by an exchange carrier. The ability of FAD1 to suppress impaired transport of FAD is explained by mislocalization of the synthetase in cells harboring multiple copies of the gene. This mechanism of suppression is supported by the presence of mitochondrial FAD synthetase activity in S. cerevisiae transformed with FAD1 on a high-copy-number plasmid but not in mitochondrial of a wild-type strain.  相似文献   

15.
The nucleotide sequence of the ribC gene encoding the synthesis of bifunctional flavokinase/flavine adenine nucleotide (FAD) synthetase in Bacillus subtilis have been determined in a family of riboflavinconstitutive mutants. Two mutations have been found in the proximal region of the gene, which controls the transferase (FAD synthase) activity. Three point mutations and one double mutation have been found (in addition to the two mutations that were detected earlier) in the distal region of the gene, which controls the flavokinase (flavin mononucleotide (FMN) synthase) activity. On the basis of all data known to date, it has been concluded that the identified mutations affect riboflavin and ATP binding sites. No mutations have been found in the PTAN conserved sequence, which forms the magnesium and ATP common binding site and is identical for organisms of all organizational levels, from bacteria too humans.  相似文献   

16.
Under various conditions of growth of the methylotrophic yeast Hansenula polymorpha, a tight correlation was observed between the levels of flavin adenine dinucleotide (FAD)-containing alcohol oxidase, and the levels of intracellularly bound FAD and flavin biosynthetic enzymes. Adaptation of the organism to changes in the physiological requirement for FAD was by adjustment of the levels of the enzymes catalyzing the last three steps in flavin biosynthesis, riboflavin synthetase, riboflavin kinase and flavin mononucleotide adenylyltransferase. The regulation of the synthesis of the latter enzymes in relation to that of alcohol oxidase synthesis was studied in experiments involving addition of glucose to cells of H. polymorpha growing on methanol in batch cultures or in carbon-limited continuous cultures. This resulted not only in selective inactivation of alcohol oxidase and release of FAD, as previously reported, but invariably also in repression/inactivation of the flavin biosynthetic enzymes. In further experiments involving addition of FAD to the same type of cultures it became clear that inactivation of the latter enzymes was not caused directly by glucose, but rather by free FAD that accumulated intracellularly. In these experiments no repression or inactivation of alcohol oxidase occurred and it is therefore concluded that the synthesis of this enzyme and the flavin biosynthetic enzymes is under separate control, the former by glucose (and possibly methanol) and the latter by intracellular levels of free FAD.Abbreviations FAD Flavin adenine dinucleotide - FMN riboflavin-5-phosphate; flavin mononucleotide - Rf riboflavin  相似文献   

17.
Flavin adenine dinucleotide (FAD) synthetase is an essential enzyme responsible for the synthesis of FAD by adenylation of riboflavin monophosphate (FMN). We have solved the 1.9 Å resolution structure of Fad1, the yeast FAD synthetase, in complex with the FAD product in the active site. The structure of Fad1 shows it to be a member of the PP-ATPase superfamily. Important conformational differences in the two motifs involved in binding the phosphate moieties of FAD compared to the Candida glabrata FMNT ortholog suggests that this loop is dynamic and undergoes substantial conformational changes during its catalytic cycle.  相似文献   

18.
Oxidation of pipecolate to Delta(1)-piperideine-6-carboxylate is catalyzed by pipecolate oxidase, an inducible, membrane-bound dehydrogenase associated with the electron transport components of Pseudomonas putida P2. From the oxidase, we obtained a smaller particle containing flavine adenine dinucleotide (FAD) and cytochrome b, but no longer able to catalyze electron transfer to oxygen or to cytochrome c. Certain properties of this l-pipecolate dehydrogenase, an FAD-flavoprotein, are reported.  相似文献   

19.
Abstract

The rapid and effective purification of soluble fumarate reductase from baker's yeast achieved by Blue Sepharose CL–6B chromatography. Cibacron Blue F3GA, the chromophore of Blue Sepharose, inhibited the activity of fumarate reductase. The enzyme bound to the column was selectively eluted by flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) or riboflavin. The purified enzyme was essentially homogeneous as indicated by polyacrylamide gel electrophoresis under non-denaturing conditions and under denaturing conditions in sodium dodecylsulfate. By this procedure, the enzyme could be rapidly purified with high yield from yeast cells.  相似文献   

20.
An oxalate oxidase was purified to apparent homogeneity from the leaves of 10-days old seedlings of forage Sorghum (Sorghum vulgare var. KH-105). The enzyme had a Mr of 124 kDa with two identical subunits, an optimum pH of 4.5, optimum temperature of 37 degrees C and activation energy (Ea) of 2.0338 Kcal/mol. The rate of reaction was linear up to 7 min. K(m) value for oxalate was 0.22 mM. The enzyme was stimulated by Cu2+ and inhibited by EDTA, NaCN, diethyldithiocarbamate, Na2SO4, but unaffected by NaCl at 0.1 mM concentration. Although the enzyme was stimulated by flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), UV and visible spectra of the enzyme did not match with that of a flavoprotein. The positive reaction of the enzyme with orcinol-H2SO4 reagent indicated its glycoprotein nature. The superiority of the purified enzyme over earlier reported oxalate oxidases for determination of urinary oxalate has been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号