首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple procedure to label individual tRNA species in a total tRNA preparation has been developed. The principle of the method is as follows: total crude tRNA (from E. coli) is incubated in the presence of a crude aminoacyl-tRNA synthetase preparation, containing most aminoacyl-tRNA synthetases and only one specific amino acid corresponding to the tRNA species which is intended to be labelled. This achieves the purpose of charging the desired tRNA species thereby protecting its 3'OH-terminus; obviously all the other tRNA species will have a free 3'OH group. Periodate oxidation, followed by beta-elimination, destroys any free 3'OH. After deacylation of the specific aminoacylated tRNA at pH 8.8 the only free 3'OH group will be the one of the desired tRNA species. High specific activity (32P)-pCp is ligated to this 3'OH by means of T4-RNA ligase. Two-dimensional polyacrylamide gel electrophoresis (2D-PGE) and sequence analysis of the isolated tRNA show that the method is very specific. Individually labelled tRNA species can be used as probes for cloning tRNA genes.  相似文献   

2.
Chick embryo tRNA, prepared by a simple large-scale method, was fractionated on three different ion-exchange columns. In all cases simple chromatographic patterns for various tRNA species were observed, indicating the presence of only a few major species of tRNA for each amino acid. By repeated chromatography one species of alanine tRNA was purified to approx. 80% purity. T1 ribonuclease digest of this purified tRNA gave a simple chromatographic pattern. Because of the simplicity of the method of preparation of tRNA from this readily available source and the presence of only a few species of tRNA for each amino acid, chick embryo is suited for the study of tRNA and its various functions in higher systems.  相似文献   

3.
Pseudomonas aeruginosa tRNA was treated with iodine, CNBr and N-ethylmaleimide, three thionucleotide-specific reagents. Reaction with iodine resulted in extensive loss of acceptor activity by lysine tRNA, glutamic acid tRNA, glutamine tRNA, serine tRNA and tyrosine tRNA. CNBr treatment resulted in high loss of acceptor ability by lysine tRNA, glutamic acid tRNA and glutamine tRNA. Only the acceptor ability of tyrosine tRNA was inhibited up to 66% by N-ethylmaleimide treatment, a reagent specific for 4-thiouridine. By the combined use of benzoylated DEAE-cellulose and DEAE-Sephadex columns, lysine tRNA of Ps. aeruginosa was resolved into two isoaccepting species, a major, tRNA Lys1 and a minor, tRNALys1. Co-chromatography of 14C-labelled tRNALys1 and 3H-labelled tRNALys2 on benzoylated DEAE-cellulose at pH 4.5 gave two distinct, non-superimposable profiles for the two activity peaks, suggesting that they were separate species. The acceptor activity of these two species was inhibited by about 95% by iodine and CNBr. Both the species showed equal response to codons AAA and AAG and also for poly(A) and poly(A1,G1) suggesting that the anticodon of these species was UUU. Chemical modification of these two species by iodine did not inhibit the coding response. The two species of lysine of Ps. aeruginosa are truly redundant in that they are indistinguishable either by chemical modification or by their coding response.  相似文献   

4.
5.
Studies of the chromatographic behavior of mammalian tRNAs, from several sources, on acylated DBAE-cellulose indicate that species of tRNA Asn , tRNA Asp and tRNA His can be retained on this matrix, while species of tRNA Tyr, tRNA Asn and tRNA Asp are not retained. Treatment of total rat liver tRNA with cyanogen bromide and subsequent chromatography on Aminex A-28 columns demonstrated that these tRNA species might contain Q (or Q*) nucleoside. However, comparable studies of the tRNA isolated from Walker 256 rat mammary tumor tissue demonstrated that this tumor tRNA almost totally lacks the hypermodified nucleosides Q and Q*. In addition, we have found that at least the major species of rat liver tRNA Asn contains the Q nucleoside. These studies indicate that chromatography on the acylated DBAE-cellulose matrix, couple with the analytical ion-exchange chromatography of cyanogen bromide treated and untreated amino-acyl-tRNA can be a valuable technique for the determination of alterations in the Q (or Q*) nucleoside content of the tRNAs isolated from normal and tumor tissues.  相似文献   

6.
7.
Growth rate dependence of transfer RNA abundance in Escherichia coli.   总被引:13,自引:1,他引:13       下载免费PDF全文
We have tested the predictions of a model that accounts for the codon preferences of bacteria in terms of a growth maximization strategy. According to this model the tRNA species cognate to minor and major codons should be regulated differently under different growth conditions: the isoacceptors cognate to major codons should increase at fast growth rates while those cognate to minor codons should decrease at fast growth rates. We have used a quantitative Northern blotting technique to measure the abundance of the methionine and the leucine isoacceptor families over growth rates ranging from 0.5 to 2.1 doublings per hour. Five tRNA species that are cognate to major codons (tRNA(eMet), tRNA(1fMet), tRNA(2fMet), tRNA(1Leu) and tRNA(3Leu) increase both as a relative fraction of total tRNA and in absolute concentration with increasing growth rates. Three tRNA species that are cognate to minor codons (tRNA(2Leu), tRNA(4Leu) and tRNA(5Leu) decrease as a relative fraction of total RNA and in absolute concentration with increasing growth rates. These data suggest that the abundances of groups of tRNA species are regulated in different ways, and that they are not regulated simply according to isoacceptor specificity. In particular, the data support the growth optimization model for codon bias.  相似文献   

8.
The analysis of the tRNAs associated to the virus-like particles produced by the Ty1 element revealed the specific packaging of three major tRNA species, in about equal amounts: the replication primer initiator tRNA(Met), the tRNA(Ser)AGA and a tRNA undetected until now as an expressed species in yeast. The latter tRNA is coded by the already described tDNA(Ser)GCT. This tRNA is enriched more than 150 fold in the particles as compared to its content in total cellular tRNA where it represents less than 0.1% (initiator tRNA(Met) and tRNA(Ser)AGA being 11 and 4 fold enriched respectively). This tRNA is the only species coded by the tDNA(Ser)GCT gene which is found in three copies per genome since no other corresponding expressed tRNA could be detected. This gene is thus very poorly expressed. The high concentration of tRNA(Ser)GCU in the particles compared to its very low cellular content led us to consider its possible implication in Ty specific processes.  相似文献   

9.
The distribution of cytokinin activity in wheat (Triticum aestivum) germ tRNA fractionated by BD-cellulose and RPC-5 chromatography has been examined. As in other organisms, the cytokinin moieties in wheat germ tRNA appear to be restricted to tRNA species that would be expected to respond to codons beginning with U. Only a few of the wheat germ tRNA species in this coding group actually contain cytokinin modifications. Cytokinin activity was associated with isoaccepting tRNASer species and with a minor tRNALeu species from wheat germ. All other wheat germ tRNA species corresponding to codons beginning with U were devoid of cytokinin activity in the tobacco callus bioassay.  相似文献   

10.
A solid phase procedure has been developed for the rapid isolation of all 20 species of tRNA from Escherichia coli. The overall yields for a single preparation cycle ranged from 62 to 96%, the average being 80%. The values for the amino acid acceptor activities of the tRNA species equaled those reported in the literature for highly purified tRNAs. Starting from crude tRNA, a given tRNA species can easily be isolated in less than 2 h. One milliliter of the resin, which is reusable, is sufficient for the isolation of 200 mg of a specific tRNA. The procedure requires a bifunctional reagent, one moiety of which (--SO2Cl) reacts with the amino acid on the aminoacylated tRNA, the other, with the --SH group on the resin. Thus, only the desired tRNA species is bound to the resin; any of the other tRNAs in the filtrate can be isolated in another cycle. Raising the pH results in deacylation and release from the resin of the desired tRNA species. For tRNA Cys, it is necessary to block the --SH of cysteine prior to reaction with the bifunctional reagent. Side reactions involving the bifunctional reagent. Side reactions involving the bifunctional reagent and tRNA are either easily reversible or negligible (less than 0.01%).  相似文献   

11.
Examination of the transfer ribonucleic acid (tRNA) produced by starving, relaxed-control (rel minus) strains of Escherichia coli for required amino acids revealed the occurrence of a number of chromatographically unique subspecies. Leucine starvation results in the formation of new isoacceptor species of leucine-, histidine-, arginine-, valine-, and phenylalanine-specific tRNA and quantitative changes in the column profiles of serine, glycine, and isoleucine tRNA. Evidence that the unique tRNA species are synthesized de novo during amino acid starvation comes from the findings that the major unique leucine isoacceptor species is not formed in stringent control cells or in rel minus cells starved for uracil or treated with rifampin. Furthermore, heat treatment of the unique leucine tRNA does not alter its chromatographic behavior, indicating that the species is not an aggregate or nuclease-damaged form of a normal isoacceptor tRNA. The methyl acceptor activities of tRNA from leucine-starved and nonstarved rel+ or rel minus cells were found to be essentially the same. This result and the finding that the chromatographic behavior of the unique leucine-specific tRNA was not altered after treatment with tRNA methylase suggests that gross methyl deficiency is probably not the biochemical basis for the occurrence of the unique species.  相似文献   

12.
The plastid (chloroplast) genomes of seed plants typically encode 30 tRNAs. Employing wobble and superwobble mechanisms, most codon boxes are read by only one or two tRNA species. The reduced set of plastid tRNAs follows the evolutionary trend of organellar genomes to shrink in size and coding capacity. A notable exception is the AUN codon box specifying methionine and isoleucine, which is decoded by four tRNA species in nearly all seed plants. However, three of these four tRNA genes were lost from the genomes of some parasitic plastid-containing lineages, possibly suggesting that less than four tRNA species could be sufficient to decode the triplets in the AUN box. To test this hypothesis, we have performed knockout experiments for the four AUN-decoding tRNAs in tobacco (Nicotiana tabacum) plastids. We find that all four tRNA genes are essential under both autotrophic and heterotrophic growth conditions, possibly suggesting tRNA import into plastids of parasitic plastid-bearing species. Phylogenetic analysis of the four plastid tRNA genes reveals striking conservation of all those bacterial features that are involved in discrimination between the different tRNA species containing CAU anticodons.  相似文献   

13.
When the arginyl-transfer ribonucleic acid (tRNA) species isolated from unshaken and from shaken cultures of Neurospora were compared by co-chromatography, a marked change in the relative abundance of the two main tRNA(arg) species was found. The two arginine tRNA species had different codon responses in ribosome binding assays. The tRNA(arg) eluting first (prevalent in shaken cultures) bound strongly to polyadenylic-guanylic acid [poly(A,G)] and to a lesser extent to polycytidylic-guanylic-adenylic acid [poly(C,G,A)]. The second tRNA(arg) species (prevalent in unshaken cultures) bound to poly(C,G,A) but not to poly(A, G). The possible significance of these observations is briefly discussed. Several modifications that improve the yield of tRNA from Neurospora were introduced in a standard isolation procedure.  相似文献   

14.
The proportion of lysine tRNA represented by the isoacceptor species lysine tRNA4 has previously been shown to be largest in cells with the greatest ability to proliferate. Using reverse phase chromatography (RPC-5), we have analyzed the changes in the relative quantities of lysine tRNA species which occur in different cellular states of the Friend cell, a transformed murine cell infected with Friend erythroleukemia virus complex. This cell undergoes erythroid differentiation when exposed to various chemicals. Lysine tRNA4 comprises 32% of the total lysine tRNA in rapidly dividing, uninduced Friend cells, but only 16% of the total lysine tRNA in uninducase. Friend cells undergoing erythroid differentiation divide more slowly than uninduced cells, and finally cease proliferation, but lysine tRNA4 becomes the major lysine tRNA species (greater than 50%). This does not appear to reflect erythroid properties of the cell, since the lysine tRNA of the mouse reticulocyte contains very little lysine tRNA4. The non-dividing erythroid Friend cell, therefore, represents an exception to the finding that non-dividing cells usually have little or no lysine tRNA4 present.  相似文献   

15.
The transfer ribonucleic acid (tRNA) populations from log-phase cells, sporulating cells (stage III), and dormant spores were compared by tRNA-deoxyribonucleic acid hybridization techniques. New tRNA species not found in log-phase cells were observed in stage III cells. Some of the tRNA made during sporulation were also present in dormant spores. Although the role and function of these new tRNA species cannot be ascribed directly to the sporulation process, their presence indicates that new tRNA genes can be transcribed during sporulation and suggests that translational control may be exerted during sporulation by tRNA.  相似文献   

16.
17.
Bacillus subtilis transfer ribonucleic acid (tRNA) was analyzed for the occurrence of thionucleotides by in vivo labeling with (35)S and fractionation by methylated albumin kieselguhr column chromatography. Alkaline hydrolysates of tRNA were also examined by column chromatography and paper electrophoresis, and the amino acid-accepting ability of thionucleotide-containing tRNA was tested after iodine oxidation. The results showed that B. subtilis tRNA contains 4-thiouridylate, a second nucleotide with properties similar to 2-thiopyrimidine, and a third unidentified thionucleotide. The amino acid-accepting ability for serine, tyrosine, lysine, and glutamic acid was markedly inhibited after oxidation of the tRNA with iodine, suggesting the presence of thionucleotides in these tRNA species. This inhibition could be reversed by thiosulfate reduction. The iodine treatment totally inactivated all lysine tRNA species, partially inactivated the serine tRNA species, and did not affect the accepting ability for valine. A comparison of tRNA from cells in the log and stationary phases and from spores revealed similar iodine inactivation patterns in all cases. The thionucleotide content in B. subtilis tRNA differed from that in Escherichia coli, both in extent and in distribution. A possible function of the thionucleotides in tRNA is discussed.  相似文献   

18.
19.
20.
Transfer ribonucleic acid is well fractionated on columns of arginine-agarose, whose properties appear in general to be similar to those of DEAE-Sephadex. However, the amino acid acceptor species are separated into sharper peaks and in several instances, notably for methionine, glycine, serine, leucine and aspartate accepting tRNAs from Escherichia coli, isoaccepting species are well resolved. In the case of methionine accepting tRNA from E. coli the tRNA Met-m species is eluted before the tRNA Met-f species and since it is also eluted prior to the bulk of the tRNA it is obtained in a high degree of purity. By comparing the properties of columns of arginine-agarose and its methyl ester in which the carboxylate anion is blocked, it is seen that the carboxylate ion plays a role in the fractionation of the tRNA Met species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号