首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.  相似文献   

2.
Phycobiliproteins (PBPs) are a type of promising sensitizers for photodynamic therapy (PDT). Upon irradiation (λ>500nm) of an oxygen-saturated aqueous solution of phycobiliproteins, particularly, C-phycocyanin (C-PC), allophycocyanin (APC) or R-phycoerythrin (R-PE), the formation of singlet oxygen (1O2) was detected by using imidazole in the presence of p-nitrosodimethylaniline (RNO). The bleaching of RNO caused by the presence of imidazole in our system showed typical concentration dependence with a maximum at about 8mM imidazole, which is in agreement with the formation of 1O2. In addition, the generation of 1O2 was verified further in the presence of D2O and specific singlet oxygen quencher — 1,4-diazabicyclo [2,2,2] octane (DABCO) and sodium azide (NaN3). Our experimental results indicated that APC possesses high ability to generate reactive oxygen species and the relative quantum yields of photogeneration of 1O2 by PBPs are as follows: APC > C-PC > R-PE.  相似文献   

3.
Using rat liver mitochondria, as model systems, we have examined the ability of the natural compound and the food-flavoring agent, vanillin to protect membranes against oxidative damage induced by photosensitization at concentrations normally used in food preparations. Vanillin, at a concentration of 2.5 mmol/L, has afforded significant protection against protein oxidation and lipid peroxidation in hepatic mitochondria induced by photosensitization with methylene blue plus light. The effect observed was both time- and concentration-dependent. The inhibitory effect is similar to ascorbic acid and the singlet oxygen quencher, diazabicyclo[2.2.2]octane (DABCO) but less effective than sodium azide and glutathione. Examination of possible mechanisms responsible for the observed protection, showed that vanillin has a significant ability to quench singlet oxygen (1O2), a reactive species responsible for damage induced during photosensitization by Type II mechanism. Hence, this flavoring compound, due to its antioxidant ability, may have potential to prevent oxidative damage to membranes in mammalian tissues and thereby the ensuing diseased states.  相似文献   

4.
Photodynamic inactivation of bacteria (PIB) proves to be an additional method to kill pathogenic bacteria. PIB requires photosensitizer molecules that effectively generate reactive oxygen species like singlet oxygen when exposed to visible light. To allow a broad application in medicine, photosensitizers should be safe when applied in humans. Substances like vitamin B2, which are most likely safe, are known to produce singlet oxygen upon irradiation. In the present study, we added positive charges to flavin derivatives to enable attachment of these molecules to the negatively charged surface of bacteria. Two of the synthesized flavin derivatives showed a high quantum yield of singlet oxygen of approximately 75%. Multidrug resistant bacteria like MRSA (Methicillin resistant Staphylococcus aureus), EHEC (enterohemorrhagic Escherichia coli), Pseudomonas aeruginosa, and Acinetobacter baumannii were incubated with these flavin derivatives in vitro and were subsequently irradiated with visible light for seconds only. Singlet oxygen production in bacteria was proved by detecting its luminescence at 1270 nm. After irradiation, the number of viable bacteria decreased up to 6 log10 steps depending on the concentration of the flavin derivatives and the light dosimetry. The bactericidal effect of PIB was independent of the bacterial type and the corresponding antibiotic resistance pattern. In contrast, the photosensitizer concentration and light parameters used for bacteria killing did not affect cell viability of human keratinocytes (therapeutic window). Multiresistant bacteria can be safely and effectively killed by a combination of modified vitamin B2 molecules, oxygen and visible light, whereas normal skin cells survive. Further work will include these new photosensitizers for topical application to decolonize bacteria from skin and mucosa.  相似文献   

5.
6.
An HPLC system combining a chemiluminescence detector was applied to estimate the singlet oxygen (1O2) generation ability of di‐sulfonic phthalocyanine zinc (ZnPcS2) isomers. As photosensitizers, ZnPcS2 produces 1O2 in air‐saturated solutions under photoirradiation. The latter reacts with methyl Cypridina luciferin analogue (MCLA) to initiate chemiluminescence. This photoinduced chemiluminescence (PCL) of MCLA provides an easy method for evaluating the isomers' 1O2 generation ability during a simultaneous HPLC separation procedure. The cis‐isomers and trans‐isomers of ZnPcS2 show different 1O2 generation abilities, which are in accordance with differences in their absorption spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Singlet oxygen is reported to have the most potent damaging effect upon the photosynthetic machinery. Usually this reactive oxygen molecule acts in concert with other ROS types under stressful conditions. To understand the specific role of singlet oxygen we took advantage of the conditional flu mutant of Arabidopsis thaliana. In flu, the negative feedback loop is abolished, which blocks chlorophyll biosynthesis in the dark. Therefore high amounts of free protochlorophyllide accumulate during darkness. If flu gets subsequently illuminated, free protochlorophyllide acts as a photosensitiser leading almost exclusively to high amounts of 1O2. Analysing the thylakoid protein pattern by using 2D PAGE and subsequent MALDI-TOF analysis, we could show, in addition to previous described effects on photosystem II, that singlet oxygen has a massive impact on the thylakoid ATP synthase, especially on its γ subunit. Additionally, it could be shown that the activity of the ATP synthase is reduced upon singlet oxygen exposure and that the rate of non-photochemical quenching is affected in flu mutants exposed to 1O2.  相似文献   

8.
Contrasting irradiation of senescent cells of the diatom Thalassiosira sp. in association with the bacterium Pseudomonas stutzeri showed the effect of intensity of irradiance on the transfer of singlet oxygen (1O2) to bacteria attached to phytoplanktonic cells. Under low irradiances, 1O2 is produced slowly, favors the oxidation of algal unsaturated lipids (photodynamic effect), and limits 1O2 transfer to attached bacteria. However, high irradiances induce a rapid and intense production of 1O2, which diffuses out of the chloroplasts and easily reaches the attached bacteria, where it efficiently oxidizes their unsaturated membrane components. Analysis of numerous sinking particle samples collected in different regions of the Canadian Arctic showed that the photooxidation state of attached bacteria increased from ice-covered areas to open water, in agreement with in vitro results. Photooxidation of bacteria appeared to be particularly intense in sea ice, where the sympagic algae–bacteria association is maintained at relatively high irradiances for long periods of time.  相似文献   

9.
Low-energy visible light (LEVL) has previously been found to modulate various processes in different biological systems. One explanation for the stimulatory effect of LEVL is light-induced reactive oxygen species formation. In the present study, both sperm and skin cells were illuminated with LEVL and were found to generate singlet oxygen (1O2). The detection of 1O2 was performed using a trapping probe, 2,2,6,6-tetramethyl-4-piperidone, coupled with electron paramagnetic resonance spectroscopy. In addition, we have shown that, together with 1O2 generation, LEVL illumination increases the reductive capacity of the cells, which explains the difficulties encountered in 1O2 detection. The potential of visible light to change the cellular redox state may explain the recently observed biostimulative effects exerted by LEVL.  相似文献   

10.
Furocoumarins (psoralens) are potent skin photosensitizing agents that are used in combination with long-wavelength ultraviolet radiation (320–400 nm) in the treatment of psoriasis and other skin diseases. Twelve linear and angular psoralens, capable of forming monofunctional and bifunctional adducts with DNA, were examined with a view to elucidate the role of 1O2 and O2? in evoking skin photosensitization reactions and skin carcinogenesis. The results showed that both linear psoralens (capable of forming interstrand cross-links) and isopsoralens (angular, monofunctional type) and 3-carbethoxypsoralen (a linear and monofunctional type) produced 1O2 and O2?, although at varying degrees. Psoralen and 3-carbethoxypsoralen produced 1O2 greater than isopsoralens (angelicins). However, nonphotosensitizing angelicin, 5-methyl-angelicin, and 4,8-dimethyl-5′-carboxypsoralen produced 1O2 greater than 8-methoxypsoralen and 5-methoxypsoralen. The three monofunctional angelicin derivatives (isopsoralens) produced more O2? than 8-methoxypsoralen, 5-methoxypsoralen, and 3,4′-dimethyl-8-methoxypsoralen. 3-Carbethoxypsoralen, a potent generator of 1O2 and a moderate producer of O2?, was highly photolabile. Until recently, skin photosensitization reactions (erythema, edema, damage to DNA or the membrane of cutaneous cells, the inhibition of scheduled DNA synthesis and skin carcinogenesis, etc.) were believed to involve photocyclo-addition of psoralens to DNA mediated by a type-I or anoxic reaction (a sensitizer-substrate interaction through the transfer of hydrogen atoms or electrons, but no direct involvement of molecular oxygen). Oxygen-dependent sensitized photodynamic reactions of type-II, involving the production of reactive oxygen (1O2 and O2?), were believed not to mediate psoralen photosensitization reactions. We suggest that 1O2 and O2? may also participate in skin photosensitization and cell membrane-damaging reactions. The fact that certain monofunctional isopsoralens produce 1O2 and O2? at rates comparable to or better than bifunctional psoralens suggests that these reactive moieties of oxygen could play a major role in explaining their recently observed carcinogenic property and cell membrane-damaging reactions (e.g., edema or inflammation, etc.).  相似文献   

11.
Hydrogen peroxide mediated killing of bacteria   总被引:6,自引:0,他引:6  
Summary Polymorphonuclear leukocytes (PMN) or neutrophils have multiple systems available for killing ingested bacteria. Nearly each of these incorporates H2O2 indicating the essential nature of this reactive oxygen intermediate for microbicidal activity. Following ingestion of bacteria by PMN, H2O2 is formed by the respiratory burst which consumes O2 and generates H2O2 from O2–. H2O2 is deposited intracellularly near bacteria within phagocytic vacuoles where it can react with the MPO-H2O2-halide system to form toxic hyperchlorous acid (HOCl) and/or possibly singlet oxygen (1O2). H2O2 can also react with O2– and/or iron (Fe++) from lactoferrin or bacteria to form the highly toxic hydroxyl radical (1OH). These mechanisms appear important since deficiencies of H2O2 production, myeloperoxidase or lactoferrin frequently increases their owner's susceptibility to infection. In particular, examination of PMN from infection prone patients with chronic granulomatous disease (CGD) most clearly demonstrates the importance of H2O2 in killing of bacteria. CGD PMN lack the capacity to effectively generate H2O2 and subsequently have impaired ability to kill catalase positive (H2O2 producing) but not catalase negative (not H2O2 producing) bacteria. PMN also have catalase and glutathione peroxidase systems in their cytoplasms to protect themselves from the toxicity of H2O2. Finally, while H2O2 is critical for host defense, it can also be released extracellularly and thereby play a significant role in PMN mediated tissue injury.  相似文献   

12.
The reactions between superoxide free radical anion (.O2) with the halocarbons CCl4, CHCl3, BrCH2CH2Br(EDB), decachloro-biphenyl (DCBP), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in dimethyl sulphoxide (DMSO) results in the emission of chemiluminescence (CL). The chemiluminescence reactions are characterized as having biphasic second order kinetics, CL wavelengths between 350 nm and 650 nm, and exhibiting perturbation by chemicals reactive with singlet oxygen. These data suggest that singlet oxygen species are the excited state responsible for the light emissions. Polarographic studies confirm .O2 consumption and halide release in the reactions, while gas liquid chromatography and NBT reduction demonstrate the decomposition of the halocarbons into products. A chemiluminescent reaction mechanism is proposed involving reductive dehalogenation of the halocarbons and the generation of singlet oxygen. The significance of singlet oxygen generation is discussed with respect to a general mechanism for explaining the rapid initiation of lipid peroxidative membrane damage in halocarbon toxigenicity in animal and plant tissues.  相似文献   

13.
14.
《Free radical research》2013,47(4-6):343-350
A naphthalenic endoperoxide was used as a non-photochemical source of singlet oxygen (1O2) to examine some interactions between this reactive oxygen species and DNA. High molecular weight DNA (ca. 108 daltons) was exposed to 120 mol m?31O2 (cumulative concentration) and analyzed for interstrand crosslinkage by hydroxyl apatite chromatography following formamide denaturation. No evidence for 1O2-induced interstrand crosslinking was obtained. The capacity of 1O2 to generate strand breaks in single-stranded (ss) and double-stranded (ds) DNA was investigated by sucrose gradient centrifugation analysis of bacteriophage øX174 DNA. No direct strand breaks could be detected at neutral pH, whereas extensive strand breakage was observed after treatment with alkali. Possible biological consequences of 1O2 -exposure were assessed by examining the plaque-forming capacity of ss and ds øX 174 DNA molecules using wildtype Escherichia coli spheroplasts as recipients. Without any further treatment with heat or alkali, exposure to the endoperoxide resulted in a time- and dose-dependent inactivation, ss DNA being considerably more sensitive than ds DNA. From the present results and those reported earlier (Nieuwint et al.,20) we infer that 1O2-induced inactivation of øX174 DNA is not due to DNA backbone breakage nor to interstrand crosslinking, but rather to some form of damage to the base or sugar moiety of the DNA, the exact nature of which remains to be elucidated.  相似文献   

15.
Abstract

Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. A soluble protein from Saccharomyces cerevisiae specifically provides protection against a thiol-containing metal-catalyzed oxidation system (thiol/Fe3+/O2) but not against an oxidation system without thiol. This 25 kDa protein acts as a peroxidase but requires the NADPH-dependent thioredoxin system or a thiol-containing intermediate, and was named thioredoxin peroxidase (TPx). The role of TPx in the cellular defense against oxidative stress induced by singlet oxygen was investigated in Escherichia coli containing an expression vector with a yeast genomic DNA fragment that encodes TPx and mutant in which the catalytically essential amino acid cysteine (Cys-47) has been replaced with alanine by a site-directed mutagenesis. Upon exposure to methylene blue and visible light, which generates singlet oxygen, there was a distinct difference between the two strains in regard to growth kinetics, viability, the accumulation of oxidized proteins and lipids, and modulation of activities of superoxide dismutase and catalase. The results suggest that TPx may play an important protective role in a singlet oxygen-mediated cellular damage.  相似文献   

16.
Photodynamic therapy (PDT), which relies on the production of reactive oxygen species (ROS) induced by a photosensitizer to kill cancer cells, has become a non-invasive approach to combat cancer. However, the conventional aggregation-caused quenching effect, as well as the low ROS generation ability of photosensitizers, restrict their biological applications. In this work, a new Ir(III) complex with a dendritic ligand has been strategically designed and synthesized by ingenious modification of the ancillary ligand of a reported Ir(III) complex ( Ir-1 ). The extended π-conjugation and multiple aromatic donor moieties endow the resulting complex Ir-2 with obvious aggregation-induced emission (AIE) activity and bathochromic emission. In in vitro experiments, importantly, Ir-2 nanoparticles exhibit the excellent photoinduced ROS generation capabilities of O2•− and 1O2, as well as excellent biocompatibility and the lipid droplets (LDs) targeting feature. This study would provide useful guidance to design efficient Ir(III)-based photosensitizers used in biological applications in the future.  相似文献   

17.
《Free radical research》2013,47(1-5):173-184
The sources and steady-state concentration of singlet oxygen in the atmosphere are assessed in view of potential effects on the biosphere. Collision-induced absorption of sunlight by molecular oxygen in 1 atm of air produces O2(a'δg) at a rate P = 1.6 × 10'cm's?1 in bright sunlight. Less than 10% are added to this purely natural source by the photolysis of ozone, and by anthropogenic sensitizers (SO2, NO2, volatile aromatics). Collisional quenching of O2(a'δg) by ground state oxygen establishes a steady-state concentration of ca. 1.7 × 108cm?1'. Reactions of singlet oxygen with other atmospheric pollutants are entirely negligible when compared with the concurrent reactions of ambient OH and 03. Potential effects of atmospheric singlet oxygen on the biosphere are limited by the deposition rate F< 0.051 P which depends on the production rate P of O2(a' δg) in the air layer immediately above the flat surface.  相似文献   

18.
《Luminescence》2003,18(6):334-340
Oxidative stress induced by ciprofloxacin and pyoverdin, a leukotoxic pigment, was studied by comparing their effect in bacteria and leukocytes. Chemiluminescence (CL) assays with lucigenin or luminol were adapted to measure the stimuli of superoxide anion (O2?) and other reactive species of oxygen (ROS) in bacteria. Ciprofloxacin principally induced the production of O2? in the three species studied: Staphylococcus aureus, Enterococcus faecalis and Escherichia coli. Lucigenin CL assay showed high oxidative stress in S. aureus due to its low superoxide dismutase (SOD) activity, whereas E. coli exhibited important SOD activity, responsible for little production of O2? in absence or presence of ciprofloxacin. Reduction of nitroblue of tetrazolium (NBT) was applied. This assay indicated that there was higher oxidative stress in S. aureus and E. faecalis than in E. coli. The comparison of oxidative stress generated in bacteria and leukocytes was used to check the selective toxicity of ciprofloxacin in comparison with pyoverdin. Ciprofloxacin did not generate significant stimuli of O2? in neutrophils, while pyoverdin duplicated the production of O2?. CL and NBT were useful to study the leukotoxicity of ciprofloxacin. Oxidative stress caused by the antibiotic and the leukotoxic pigment was similar in bacteria. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Cytoprotective effects of short-term treatment with grape seed extract (GSE) upon human gingival fibroblasts (hGFs) were evaluated in relation to its antioxidant properties and compared with those of a water-soluble analog of vitamin E: trolox (Tx). GSE and Tx showed comparable antioxidant potential in vitro against di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH; a stable radical), hydroxyl radical (OH), singlet oxygen (1O2), and hydrogen peroxide (H2O2). Pretreatment or concomitant treatment with GSE for 1 min protected hGFs from oxidative stressors, including H2O2, acid-electrolyzed water (AEW), and 1O2, and attenuated the intracellular formation of reactive oxygen species induced by H2O2 and AEW. Tx also reduced the H2O2- and AEW-induced intracellular formation of reactive oxygen species, but showed no cytoprotective effects on hGFs exposed to H2O2, AEW, or 1O2. These results suggest that the cytoprotective effects of GSE are likely exerted independently of its antioxidant potential.  相似文献   

20.

Background  

Vitamin B6 is a collective term for a group of six interconvertible compounds: pyridoxine, pyridoxal, pyridoxamine and their phosphorylated derivatives. Vitamin B6 plays essential roles as a cofactor in a range of biochemical reactions. In addition, vitamin B6 is able to quench reactive oxygen species in vitro, and exogenously applied vitamin B6 protects plant cells against cell death induced by singlet oxygen (1O2). These results raise the important question as to whether plants employ vitamin B6 as an antioxidant to protect themselves against reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号