首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results are presented from experimental studies of the plasma effect on the generation of microwave radiation in systems with a virtual cathode. Using a triode with a virtual cathode as an example, it is shown that the cathode and anode plasmas reduce the generation efficiency; in particular, the power of the generated microwave radiation decreases and the radiation frequency and the microwave pulse duration change appreciably. It is demonstrated that, at high microwave powers, the power radiated into free space can be reduced by the plasma generated at the surface of the output window. This plasma appears due to discharges developing on the window surface under the combined action of bremsstrahlung, UV radiation, electrons and ions arriving from the beam formation zone, and the microwave electric field.  相似文献   

2.
Results of two-dimensional hydrodynamic simulations of a surface glow discharge operating at pressures of 0.2–0.5 Torr in a nitrogen flow propagating with a velocity of 1000 m/s in the presence of external ionization are presented. The effect of the external ionization rate on discharge operation is analyzed. The current-voltage characteristics of the discharge are calculated for different intensities of external ionization in both the presence and absence of secondary electron emission from the cathode. The discharge structure and plasma parameters in the vicinity of the loaded electrode are considered. It is shown that, when the discharge operates at the expense of secondary emission from the cathode, the discharge current and cathode sheath configuration are insensitive to external ionization. It is also demonstrated that, even at a high rate of external ionization, the discharge operates due to secondary emission from the cathode.  相似文献   

3.
Scaling up microbial fuel cells (MFCs) requires a better understanding the importance of the different factors such as electrode surface area and reactor geometry relative to solution conditions such as conductivity and substrate concentration. It is shown here that the substrate concentration has significant effect on anode but not cathode performance, while the solution conductivity has a significant effect on the cathode but not the anode. The cathode surface area is always important for increasing power. Doubling the cathode size can increase power by 62% with domestic wastewater, but doubling the anode size increases power by 12%. Volumetric power density was shown to be a linear function of cathode specific surface area (ratio of cathode surface area to reactor volume), but the impact of cathode size on power generation depended on the substrate strength (COD) and conductivity. These results demonstrate the cathode specific surface area is the most critical factor for scaling-up MFCs to obtain high power densities.  相似文献   

4.
The current density on the open field lines of the Livermore spheromak (SSPX) typically exceeds the saturation current density of the bulk plasma. We assume that the mechanism that provides conditions for that is associated with the formation of a thin layer near the cathode surface, where both the plasma and the neutral density are higher than in the bulk plasma and where intense ionization occurs. The ions formed in this layer fall back onto the cathode, whereas electrons contribute to the high current density in the bulk plasma. The particle balance in the ionizing layer is determined by the recycling coefficient, which, in turn, depends on the cathode temperature and the sheath voltage. As it turns out, these dependences give rise to an instability that leads to the current filamentation and the formation of hot spots on the cathode surface. The instability can be characterized in a phenomenological manner without going into the details of the structure of the ionizing layer, whose effect on the instability shows up in the form of a couple of numerical coefficients of the order of one. We predict the characteristic size and the shape of the filaments (and the hot spots), which are in a general agreement with discoloration patterns on the surface of the cathode in the SSPX. If the magnetic field is tilted to the surface, the footpoints of the filaments move with a significant velocity, whose direction depends on the ratio of the ion gyroradius and the thickness of the ionizing layer. This instability, although primarily considered in conjunction with the SSPX experiment, may play a role in spherical tokamaks and other systems with coaxial helicity injection.  相似文献   

5.
Results from experimental studies of an electric discharge operating between a solid anode and an electrolytic cathode in a wide pressure range are presented. Specific features of the discharge ignition and discharge shape and peculiarities the structure of cathode spots on the electrolyte surface and anode spots on the surface of the solid electrode are revealed. The dependences of the current density on the electrolytic cathode and metal anode on the total current are measured, and the spatial distribution of the electric field is determined. A transition of a glow discharge into a multichannel discharge is investigated. The experimental data on the frequency and amplitude of the current and voltage pulsations are presented. Requirements for the maintenance of an electric discharge with an electrolytic cathode are formulated using the obtained experimental results.  相似文献   

6.
7.
A dc gas discharge between copper electrodes in the current range of 5–20 А was studied experimentally. The discharge gap length was varied within 45–70 mm. The cathode was a 10-mm-diameter rod placed in the water flowing out from a dielectric tube. Three discharge configurations differing in the position of the cathode upper end with respect to the water surface were considered: (i) above water; (ii) flush with the water surface, and (iii) under water. The electric and optical characteristics of the discharge in the second configuration were studied in more detail. It is established that the discharge properties are similar to those of an electric arc. Considerable cathode erosion was observed in the third configuration. It is revealed that fine-dispersed copper grains form in the course of erosion.  相似文献   

8.
Construction of efficient performance of microbial fuel cells (MFCs) requires certain practical considerations. In the single chamber microbial fuel cell, there is no border between the anode and the cathode, thus the diffusion of the dissolved oxygen has a contrary effect on the anodic respiration and this leads to the inhibition of the direct electron transfer from the biofilm to the anodic surface. Here, a fed-batch single chambered microbial fuel cells are constructed with different distances 3 and 6?cm (anode- cathode spacing), while keeping the working volume is constant. The performance of each MFC is individually evaluated under the effects of vitamins & minerals with acetate as a fed load. The maximum open circuit potential during testing the 3 and 6?cm microbial fuel cells is about 946 and 791?mV respectively. By decreasing the distance between the anode and the cathode from 6 to 3?cm, the power density is decreased from 108.3?mW?m?2 to 24.5?mW?m?2. Thus, the short distance in membrane-less MFC weakened the cathode and inhibited the anodic respiration which affects the overall performance of the MFC efficiency. The system is displayed a maximum potential of 564 and 791?mV in absence & presence of vitamins respectively. Eventually, the overall functions of the acetate single chamber microbial fuel cell can be improved by the addition of vitamins & minerals and increasing the distance between the cathode and the anode.  相似文献   

9.
A Ni‐rich concentration‐gradient Li[Ni0.865Co0.120Al0.015]O2 (NCA) cathode is prepared with a Ni‐rich core to maximize the discharge capacity and a Co‐rich particle surface to provide structural and chemical stability. Compared to the conventional NCA cathode with a uniform composition, the gradient NCA cathode exhibits improved capacity retention and better thermal stability. Even more remarkably, the gradient NCA cathode maintains 90% of its initial capacity after 100 cycles when cycled at 60 °C, whereas the conventional cathode exhibits poor capacity retention and suffers severe structural deterioration. The superior cycling stability of the gradient NCA cathode largely stemmed from the gradient structure combines with the Co‐rich surface, which provides chemical stability against electrolyte attack and reduces the inherent internal strain observed in all Ni‐rich layered cathodes in their charged state, thus providing structural stability against the repeated anisotropic volume changes during cycling. The high discharge capacity of the proposed gradient NCA cathode extends the driving range of electric vehicles and reduces battery costs. Furthermore, its excellent capacity retention guarantees a long battery life. Therefore, gradient NCA cathodes represent one of the best classes of cathode materials for electric vehicle applications that should satisfy the demands of future electric vehicles.  相似文献   

10.
A two-chamber MFC system was operated continuously for more than 500 days to evaluate effects of biofilm and chemical scale formation on the cathode electrode on power generation. A stable power density of 0.57 W/m2 was attained after 200 days operation. However, the power density decreased drastically to 0.2 W/m2 after the cathodic biofilm and chemical scale were removed. As the cathodic biofilm and chemical scale partially accumulated on the cathode, the power density gradually recovered with time. Microbial community structure of the cathodic biofilm was analyzed based on 16S rRNA clone libraries. The clones closely related to Xanthomonadaceae bacterium and Xanthomonas sp. in the Gammaproteobacteria subdivision were most frequently retrieved from the cathodic biofilm. Results of the SEM-EDX analysis revealed that the cation species (Na+ and Ca2+) were main constituents of chemical scale, indicating that these cations diffused from the anode chamber through the Nafion membrane. However, an excess accumulation of the biofilm and chemical scale on the cathode exhibited adverse effects on the power generation due to a decrease in the active cathode surface area and an increase in diffusion resistance for oxygen. Thus, it is important to properly control the formation of chemical scale and biofilm on the cathode during long-term operation.  相似文献   

11.
Numerical simulations of a negative corona in air demonstrate that the experimentally observed regime of self-oscillations, known as Trichel pulses, is well described by a three-dimensional axisymmetric model that is based on the standard transport equations and in which only the ion-induced secondary electron emission at the cathode is taken into account. The quantitative difference between the measured and calculated values of the mean current and the pulse repetition rate most likely stems from the insufficiently large dimensions of the computation region and from the fact that the point shape adopted in simulations somewhat inexactly conforms to that used in experiments. It was found that the transverse discharge structure near the cathode radically changes during the pulse. Specifically, as the current grows, a cathode sheath forms at the discharge axis and expands over the cathode surface. When the current falls off, the cathode sheath is rapidly destroyed; as a result, the characteristic field structure is well defined only near the discharge axis and becomes virtually indistinguishable as the current decreases by an order of magnitude.  相似文献   

12.
Results are presented from experimental studies of the prebreakdown phase of an electric discharge between point (anode) and plane (cathode) electrodes immersed in water with different initial conductivity. When a high-voltage pulse is applied, the induced conductivity is detected in the discharge gap. Its value is one order of magnitude higher than the initial conductivity. It is shown that the induced conductivity increases almost linearly with the initial conductivity. The induced conductivity correlates with the UV emission from the cathode surface. A qualitative analysis of the experimental results is performed.  相似文献   

13.
Layered oxide cathodes with a high-nickel (Ni ≥ 0.9) content exhibit great potential for enabling high-energy-density lithium-ion batteries. However, their practical feasibility and cycle life are hampered by severe surface reactivity with the electrolyte. A LiNi0.90Co0.05Al0.05O2 cathode is presented enriched with Al on the surface (S-NCA) and benchmark it against a LiNi0.90Co0.05Al0.05O2 cathode obtained by a conventional co-precipitation method that has a uniform Al distribution throughout the bulk (B-NCA). The S-NCA cathode greatly outperform with an impressive capacity retention of 84% after 1000 cycles in pouch full cells with graphite anode compared to 62% retention for B-NCA. Advanced surface characterization methodologies, including time-of-flight secondary-ion mass spectrometry, reveal that the Al-enriched surface morphology facilitates the formation of a robust, thin electrode-electrolyte interphase (EEI), effectively suppressing the oxidative decomposition of the electrolyte, gas generation, and metallic dead lithium formation on graphite anode. The results illustrate that surface reactivity with the electrolyte is the primary factor limiting the cycle of cells with high-Ni cathodes. The work provides valuable insights toward the practical viability of ultrahigh-Ni cathodes in lithium-ion batteries.  相似文献   

14.
Results are presented from experimental studies of a high-current electric discharge operating between an St45 steel cathode and a service water anode in a wide range of air pressures. Peculiarities of discharge ignition and specific features of cathode and anode spots were revealed. The behavior of the current density on a service water anode was investigated for the first time. Comparison of the current densities j on the steel cathode and service water anode shows that, in the parameter range under study, Hehl’s law is not satisfied on the water anode. The two-dimensional distribution of the potential inside and on the surface of the service water anode was measured.  相似文献   

15.
利用电化学活跃微生物协助电解发酵产氢   总被引:2,自引:0,他引:2  
摘要:电解协助发酵产氢是在外源电解协助下,利用电化学活跃微生物在石墨阳极上生长达到彻底氧化因发酵产氢残存的有机酸,产生CO2、电子与质子,电子进入石墨阳极经导线传到铂阴极,而质子则穿过阳离子膜进入阴极池,在无氧环境下,通过外加电压和铂的催化下,电子与质子结合为氢。此过程电子回收率可达90%以上,产氢效率可达8-9mol H2/mol Glucose。这一战略从根本上克服发酵产氢的发酵障碍和代谢产物的反馈抑制,极大地提高了氢转化率,极有可能率先应用于能源作物原料的氢能转化、以及有机污水和有机废弃物处理。  相似文献   

16.
In this communication, we report a binder-free oxygen reduction cathode for microbial fuel cells. The binder-free cathode is prepared by growth of nitrogen-doped carbon nanofibers (NCNFs) on stainless steel mesh (SSM) via simple pyrolysis of pyridine. The interaction force between NCNFs and SSM surface is very strong which is able to tolerate water flush. The NCNFs/SSM cathode shows high and stable electrocatalytic activity for oxygen reduction reaction, which is comparable to that of Pt/SSM and ferricyanide cathode. This study proposes a promising low-cost binder-free cathode for microbial fuel cells.  相似文献   

17.
Li‐rich manganese based oxides (LRMOs) are considered an attractive high‐capacity cathode for advanced Li‐ion batteries; however, their poor cyclability and gradual voltage fading have hindered their practical applications. Herein, an efficient and facile strategy is proposed to stabilize the lattice structure of LRMOs by surface modification of polyacrylic acid (PAA). The PAA‐coated LRMO electrode exhibits only 104 mV of the voltage fading after 100 cycles and 88% capacity retention over 500 cycles. The structural stability is attributed to the carboxyl groups in PAA chains reacting with oxygen species on the surface of LRMO to form a uniform and tightly coated film, which significantly suppresses the dissolution of transition metal elements from the cathode materials into the electrolyte. Importantly, a H+/Li+ exchange reaction takes place between the LRMO and PAA, generating a proton‐doped surface layer. Density functional theory calculations and experimental evidence demonstrates that the H+ ions in the surface lattice efficiently inhibit the migration of transition metal ions, leading to a stabilized lattice structure. This surface modification approach may provide a new route to building a stable Li‐rich oxide cathode with high capacity retention and low voltage fading for practical Li‐ion battery applications.  相似文献   

18.
Utilization of ballistic focusing in the longitudinal Hall-type ion source is described. It allows transformation of the ion beam shape from an “ellipsoidal” one to a linear one, as well as increasing the ion beam current density per the operating surface. Both the influence of transverse magnetic field and edge effects on the beam shape are investigated. The ion beam is charge compensated by a plasma neutralizer designed on the basis of a supplementary semi-self-maintained magnetron-type discharge and hollow cathode effect.  相似文献   

19.
Activated carbon (AC) air-cathodes are inexpensive and useful alternatives to Pt-catalyzed electrodes in microbial fuel cells (MFCs), but information is needed on their long-term stability for oxygen reduction. AC cathodes were constructed with diffusion layers (DLs) with two different porosities (30% and 70%) to evaluate the effects of increased oxygen transfer on power. The 70% DL cathode initially produced a maximum power density of 1214±123 mW/m(2) (cathode projected surface area; 35±4 W/m(3) based on liquid volume), but it decreased by 40% after 1 year to 734±18 mW/m(2). The 30% DL cathode initially produced less power than the 70% DL cathode, but it only decreased by 22% after 1 year (from 1014±2 mW/m(2) to 789±68 mW/m(2)). Electrochemical tests were used to examine the reasons for the degraded performance. Diffusion resistance in the cathode was found to be the primary component of the internal resistance, and it increased over time. Replacing the cathode after 1 year completely restored the original power densities. These results suggest that the degradation in cathode performance was due to clogging of the AC micropores. These findings show that AC is a cost-effective material for oxygen reduction that can still produce ~750 mW/m(2) after 1 year.  相似文献   

20.
The interaction of a plasma in the accelerating gap of an open discharge with a strong external electric field and with the cathode surface has been investigated theoretically and experimentally. In a pulsed nanosecond discharge, the ion inertia and plasma screening of the electric field cause a fast growth of the electric field E in the cathode region and a decrease in the length of the latter. Along with a reduction of the electron multiplication factor at high electric fields, this leads to a substantial decrease in the ion flux toward the cathode, which allows one to develop highly efficient open-discharge light sources with a long lifetime and low cathode sputtering. In this respect, continuous and quasi-continuous discharges are less advantageous because of the smaller increase in the electric field in the cathode region. The Townsend coefficients of charge multiplication and electron emission at high electric fields typical of open discharges have been measured for the first time. Fast ions and atoms extracted from the plasma of the accelerating gap significantly affect the cathode emission properties. In particular, photoemission is enhanced by more than one order of magnitude and becomes the main mechanism for electron generation. This also increases the efficiency and lifetime of open-discharge light sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号