首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silver-nickel alloy nanoparticles with varying size were synthesized by reducing the metal precursors chemically using a single-step solution-based synthesis route. The structural, optical, and nonlinear optical properties of the prepared samples were investigated. The synthesized samples having highly agglomerated, interconnected nature and found to exhibit dipole and multipole surface plasmon resonance related optical absorption bands. Nonlinear optical and optical limiting properties were investigated using a single beam open aperture z-scan technique with the use of 532 nm, 5-ns laser pulses. The nonlinearity observed was found to have contributions from saturable absorption (SA) and excited state absorption (ESA) related to free carriers. The effective nonlinear optical absorption was enhanced in AgNi alloy compared to pure Ag nanostructures.  相似文献   

2.
Dunn KW  Wang E 《BioTechniques》2000,28(3):542-4, 546, 548-50
Refinements in design have simplified confocal microscopy to the extent that it has become a standard research tool in cell biology. However, as confocal microscopes have become more powerful, they have also become more demanding of their optical components. In fact, optical aberrations that cause subtle defects in image quality in wide-field microscopy can have devastating effects in confocal microscopy. Unfortunately, the exacting optical requirements of confocal microscopy are often hidden by the optical system that guarantees a sharp image, even when the microscope is performing poorly. Optics manufacturers provide a wide range of microscope objectives, each designed for specific applications. This report demonstrates how the trade-offs involved in objective design can affect confocal microscopy.  相似文献   

3.
具有超声定位的高空间分辨率和光学检测的高灵敏度的超声调制光学成像技术是一种有前途的无损的生物组织成像技术。文章阐述了该技术的成像原理,评述了前人在散射介质中声光作用机制的理论研究;介绍了该领域在技术路线上的最新研究进展;最后总结了超声调制光学成像技术的优点并展望了其在生物医学领域的应用前景。  相似文献   

4.
Confocal scanning microscopy, a form of optical sectioning microscopy, has radically transformed optical imaging in biology. These devices provide a powerful means to eliminate from images the background caused by out-of-focus light and scatter. Confocal techniques can also improve the resolution of a light microscope image beyond what is achievable with widefield fluorescence microscopy. The quality of the images obtained, however, depends on the user's familiarity with the optical and fluorescence concepts that underlie this approach. We describe the core concepts of confocal microscopes and important variables that adversely affect confocal images. We also discuss data-processing methods for confocal microscopy and computational optical sectioning techniques that can perform optical sectioning without a confocal microscope.  相似文献   

5.
The optical properties of thiamine diphosphate-dependent enzymes change significantly on their interaction with cofactors (thiamine, bivalent metal ions) and substrates. These changes are connected with structural alterations of the active site and the mechanism of its functioning, and in some cases they reflect changes in the optical properties of the coenzyme itself within the protein. The use of optical characteristics, especially together with model systems, appeared to be a rather promising approach for investigation of the active site of thiamine diphosphate-dependent enzymes and the mechanism of its functioning. So, it seemed to be useful to summarize the literature data concerning the optical characteristics of thiamine (thiamine diphosphate) in model systems and the efficiency of their application for study of thiamine diphosphate-dependent enzymes.  相似文献   

6.
The development of advanced optical methods has played a key role in propelling progress in neurobiology. Genetically-encoded fluorescent molecules found in nature have enabled labeling of individual neurons to study their physiology and anatomy. Here we discuss the recent use of both native and synthetic optical highlighter proteins to address key problems in neurobiology, including questions relevant to synaptic function, neuroanatomy, and the organization of neural circuits.  相似文献   

7.
Emerging as well as the most frequently used optical microscopy techniques are reviewed and image contrast generation methods in a microscope are presented, focusing on the nonlinear contrasts such as harmonic generation and multiphoton excitation fluorescence. Nonlinear microscopy presents numerous advantages over linear microscopy techniques including improved deep tissue imaging, optical sectioning, and imaging of live unstained samples. Nonetheless, with the exception of multiphoton excitation fluorescence, nonlinear microscopy is in its infancy, lacking protocols, users and applications; hence, this review focuses on the potential of nonlinear microscopy for studying photosynthetic organisms. Examples of nonlinear microscopic imaging are presented including isolated light-harvesting antenna complexes from higher plants, starch granules, chloroplasts, unicellular alga Chlamydomonas reinhardtii, and cyanobacteria Leptolyngbya sp. and Anabaena sp. While focusing on nonlinear microscopy techniques, second and third harmonic generation and multiphoton excitation fluorescence microscopy, other emerging nonlinear imaging modalities are described and several linear optical microscopy techniques are reviewed in order to clearly describe their capabilities and to highlight the advantages of nonlinear microscopy.  相似文献   

8.
We present plasmonic optical trapping of micron-sized particles in biologically relevant buffer media with varying ionic strength. The media consist of 3 cell-growth solutions and 2 buffers and are specifically chosen due to their widespread use and applicability to breast-cancer and angiogenesis studies. High-precision rheological measurements on the buffer media reveal that, in all cases excluding the 8.0 pH Stain medium, the fluids exhibit Newtonian behavior, thereby enabling straightforward measurements of optical trap stiffness from power-spectral particle displacement data. Using stiffness as a trapping performance metric, we find that for all media under consideration the plasmonic nanotweezers generate optical forces 3–4x a conventional optical trap. Further, plasmonic trap stiffness values are comparable to those of an identical water-only system, indicating that the performance of a plasmonic nanotweezer is not degraded by the biological media. These results pave the way for future biological applications utilizing plasmonic optical traps.  相似文献   

9.

Purpose

To investigate the profile and determinants of retinal optical intensity in normal subjects using 3D spectral domain optical coherence tomography (SD OCT).

Methods

A total of 231 eyes from 231 healthy subjects ranging in age from 18 to 80 years were included and underwent a 3D OCT scan. Forty-four eyes were randomly chosen to be scanned by two operators for reproducibility analysis. Distribution of optical intensity of each layer and regions specified by the Early Treatment of Diabetic Retinopathy Study (ETDRS) were investigated by analyzing the OCT raw data with our automatic graph-based algorithm. Univariate and multivariate analyses were performed between retinal optical intensity and sex, age, height, weight, spherical equivalent (SE), axial length, image quality, disc area and rim/disc area ratio (R/D area ratio).

Results

For optical intensity measurements, the intraclass correlation coefficient of each layer ranged from 0.815 to 0.941, indicating good reproducibility. Optical intensity was lowest in the central area of retinal nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer and photoreceptor layer, except for the retinal pigment epithelium (RPE). Optical intensity was positively correlated with image quality in all retinal layers (0.553<β<0.851, p<0.01), and negatively correlated with age in most retinal layers (-0.362<β<-0.179, p<0.01), except for the RPE (β = 0.456, p<0.01), outer nuclear layer and photoreceptor layer (p>0.05). There was no relationship between retinal optical intensity and sex, height, weight, SE, axial length, disc area and R/D area ratio.

Conclusions

There was a specific pattern of distribution of retinal optical intensity in different regions. The optical intensity was affected by image quality and age. Image quality can be used as a reference for normalization. The effect of age needs to be taken into consideration when using OCT for diagnosis.  相似文献   

10.
光学透明技术是一种通过各种化学试剂,将原本不透明的生物样本实现透明化,并在光学显微镜下深度成像的技术。结合多种光学显微成像新技术,光学透明技术可对整个组织进行成像和三维重建,深度剖析生物体内部空间特征与形成机制。近年来,多种植物光学透明技术和多尺度成像技术被陆续研发,并取得了丰硕的研究成果。该文综述了生物体光学透明技术的基本原理和一些新技术,重点介绍基于光学透明技术开发的新型成像方法及其在植物成像与细胞生物学中的应用,为后续植物整体、组织或器官的透明、成像与三维重构及功能研究提供理论依据和技术支持。  相似文献   

11.
Computational models and experimental optical mapping of cardiac electrophysiology serve as powerful tools to investigate the underlying mechanisms of arrhythmias. Modeling can also aid the interpretation of optical mapping signals, which may have different characteristics with respect to the underlying electrophysiological signals they represent. However, despite the prevalence of atrial arrhythmias such as atrial fibrillation, models of optical electrical mapping incorporating realistic structure of the atria are lacking. Therefore, we developed image-based models of atrial tissue using structural information extracted from optical coherence tomography (OCT), which can provide volumetric tissue characteristics in high resolution. OCT volumetric data of four swine atrial tissue samples were used to develop models incorporating tissue geometry, tissue-specific myofiber orientation, and ablation lesion regions. We demonstrated the use of these models through electrophysiology and photon scattering simulations. Changes in transmural electrical conduction were observed with the inclusion of OCT-derived, depth-resolved fiber orientation. Additionally, the amplitude of optical mapping signals were not found to correspond with lesion transmurality because of lesion geometry and electrical propagation occurring beyond excitation light penetration. This work established a framework for the development of tissue-specific models of atrial tissue derived from OCT imaging data, which can be useful in future investigations of electrophysiology and optical mapping signals with respect to realistic atrial tissue structure.  相似文献   

12.
Biosensors are by definition a combination of a biological receptor compound and a physical or physicochemical transducer. Therefore, the transducing structure is a critical part of every biosensor. In the development of new and improved biosensing layers the importance of the transducing structure is not restricted to the substrate to which biological structures have to be coupled. A field of even greater importance is the use of transducers as probes providing information on the structure and function of biosensing layers, and their relation to a transducer surface.

The aim of this paper is to give an overview on optical transducer principles and optical (surface) analytical techniques relevant as part of biosensing structures as well as probes in the development and optimisation of biosensing layers. Categories discussed are basic optical effects, materials involved, surface chemistry, the principal and technological limits of spatial resolution, and sensitivity. The intimate relation between the spatial resolution of a probe, the resulting size of interaction areas, and the feasibility of array structures is pointed out.

Two interferometric methods are presented in principle, and their application to biosensing and some results are discussed in detail. The necessity to characterise receptor layers to get detailed information about the interaction process is pointed out. The close relationship between optimal characterisation of layers by selection of adequate probe technologies and improvement of probe performance, and the development of new biosensing layers is discussed. Finally an outlook is given for future aspects of improved spatial resolution and multianalyte detection.  相似文献   


13.
Optical spacers based on metal oxide layers have been intensively studied in poly(3‐hexylthiophene) (P3HT) based polymer solar cells for optimizing light distribution inside the device, but to date, the potential of such a metal oxide spacer to improve the electronic performance of the polymer solar cells simultaneously has not yet be investigated. Here, a detailed study of performance improvement in high efficient polymer solar cells by insertion of solution‐processed ZnO optical spacer using ethanolamine surface modification is reported. Insertion of the modified ZnO optical spacer strongly improves the performance of polymer solar cells even in the absence of an increase in light absorption. The electric improvements of the device are related to improved electron extraction, reduced contact barrier, and reduced recombination at the cathode. Importantly, it is shown for the first time that the morphology of optical spacer layer is a crucial parameter to obtain highly efficient solar cells in normal device structures. By optimizing optical spacer effects, contact resistance, and morphology of ZnO optical spacers, poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6diyl] [3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl] thieno[3,4‐b]thiophenediyl]] (PTB7):[6,6]‐phenyl‐C71‐butyric acid (PC70BM) bulk heterojunction solar cells with conversion efficiency of 7.6% are obtained in normal device structures with all‐solution‐processed interlayers.  相似文献   

14.
无损光学法测量人胃粘膜/粘膜下层组织的光衰减特性   总被引:5,自引:0,他引:5  
研究了人正常胃粘膜及粘膜下层组织对640 nm,690 nm,740 nm,790 nm,840 nm和890 nm波长的钛宝石激光的光衰减特性以及光学穿透深度,实验采用激光斜入射式空间分辨反射光和CCD探测器以及非线性拟合确定组织光学特性。结果表明:人正常胃粘膜及粘膜下层组织对六个波长的激光的有效衰减系数和光学穿透深度都是随着激光波长的变化而变化的。其有效衰减系数的最大值在640 nm,其值为1.12 mm-1,最小值在790 nm,其值为0.901 mm-1,最大差异在790 nm和890 nm之间,其值为19.9%,最小差异在690 nm和740nm之间,其值为2.83%。其光学穿透深度的最大值在790 nm,其值为1.11 mm,最小值在640 nm,其值为0.890 mm,最大差异在640 nm和790 nm之间,其值为24.7%,最小差异在690 nm和740 nm之间,其值为2.97%。  相似文献   

15.
光镊是由美国科学家Arthur Ashkin于1986年发明的,是一种利用高度汇聚的激光束产生的三维梯度势阱来俘获、操纵微小粒子的技术。因其可俘获、操纵单个细胞,并在细胞和亚细胞层次上为生物医学研究提供方便,近年来,已越来越多地被应用于生物医学研究中。本文在介绍光镊的原理和特点的基础上,阐述了光镊(尤其是拉曼光镊)技术在生物医学领域中的研究进展、现状和展望。  相似文献   

16.
皮肤的光学模型   总被引:5,自引:0,他引:5  
基于人体皮肤的组织结构,光在皮肤组织中的传输特性以及皮肤各层的组织光学参数,建立了正常皮肤的光学模型,介绍了该模型中的组织光学参数的确定方法。本文建立的皮肤组织光学模型及其方法,可应用于皮肤光学基础与临床的其它研究中。  相似文献   

17.
We predict an optical curtain effect, i.e., formation of a spatially invariant light field as light emerges from a set of periodic metallic nano-objects. The underlying physical mechanism of generation of this unique optical curtain can be explained in both the spatial domain and the wave-vector domain. In particular, in each period, we use one metallic nanostrip to equate the amplitudes of lights impinging on the openings of two metallic nanoslits and also shift their phases by π difference. We elaborate the influence on the output effect from some geometrical parameters like the periodicity, the slit height, and so on. By controlling the light illuminated on metallic subwavelength apertures, it is practical to generate optical curtains of arbitrary forms, which may open new routes of plasmonic nanolithography.  相似文献   

18.
Today''s telecommunication is based on optical packets which transmit the information in optical fiber networks around the world. Currently, the processing of the signals is done in the electrical domain. Direct storage in the optical domain would avoid the transfer of the packets to the electrical and back to the optical domain in every network node and, therefore, increase the speed and possibly reduce the energy consumption of telecommunications. However, light consists of photons which propagate with the speed of light in vacuum. Thus, the storage of light is a big challenge. There exist some methods to slow down the speed of the light, or to store it in excitations of a medium. However, these methods cannot be used for the storage of optical data packets used in telecommunications networks. Here we show how the time-frequency-coherence, which holds for every signal and therefore for optical packets as well, can be exploited to build an optical memory. We will review the background and show in detail and through examples, how a frequency comb can be used for the copying of an optical packet which enters the memory. One of these time domain copies is then extracted from the memory by a time domain switch. We will show this method for intensity as well as for phase modulated signals.  相似文献   

19.
The crystalline lens in the cichlid fish Aequidens pulcher undergoes a transformation of its optical properties every dawn and dusk as the eye adapts to changes in light conditions. During dusk the transformation result in an increase of the refractive power in the lens cortex, the outermost 40 percent. The change is thought to match the optical properties of the lens to the requirements of the retina. Using a short term in vitro lens culturing system together with optical measurements we here present data that confirm that the optical properties of the lens can change within hours and that dopamine influences the optical properties of the lens. Dopamine yields dose-dependent decrease of the refractive power in the lens cortex. The D1-agonist SKF-38393 induces a similar decrease of the refractive power in the cortex, while the D2-agonist quinpirole has no effect. The effect of dopamine can be blocked by using the D1-antagonist SCH 23390. Our results suggest that dopamine alone could be responsible for the light/dark adaptive optical changes in the lens, but the involvement of other signaling substances cannot be ruled out.  相似文献   

20.
The conventional optical microscope has been the primary tool in assisting pathological examinations. The modern digital pathology combines the power of microscopy, electronic detection, and computerized analysis. It enables cellular-, molecular-, and genetic-imaging at high efficiency and accuracy to facilitate clinical screening and diagnosis. This paper first reviews the fundamental concepts of microscopic imaging and introduces the technical features and associated clinical applications of optical microscopes, electron microscopes, scanning tunnel microscopes, and fluorescence microscopes. The interface of microscopy with digital image acquisition methods is discussed. The recent developments and future perspectives of contemporary microscopic imaging techniques such as three-dimensional and in vivo imaging are analyzed for their clinical potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号