共查询到20条相似文献,搜索用时 8 毫秒
2.
We report the design, fabrication, and characterization of a periodic grating of shallow rectangular grooves in a metallic film with the goal of maximizing the coupling efficiency of an extended plane wave (PW) of visible or near-infrared light into a single surface plasmon polariton (SPP) mode on a flat metal surface. A PW-to-SPP power conversion factor >45% is demonstrated at a wavelength of 780?nm, which exceeds by an order of magnitude the experimental performance of SPP grating couplers reported to date at any wavelength. Conversion efficiency is maximized by matching the dissipative SPP losses along the grating surface to the local coupling strength. This critical coupling condition is experimentally achieved by tailoring the groove depth and width using a focused ion beam. 相似文献
3.
The optical beam generated by a micro triangular prism is presented to excite surface plasmon polaritons (SPPs) on a single silver nano slit. The electromagnetic fields generated by the micro triangular prism and the excited surface plasmon polaritons are simulated with finite-difference time-domain method. Compared with directly normal incident beam, the efficiency of SPPs’ excitation with the beam generated by the micro triangular prism is highly improved. 相似文献
4.
Surface plasmon resonance imaging and surface plasmon induced fluorescent are sensitive tools for surface analysis. However, existing instruments in this area have provided limited capability for concurrent detection, and may be large and expensive. We demonstrate a highly cost-effective system capable of concurrent surface plasmon resonance microscopy (SPRM) and surface plasmon resonance-enhanced fluorescence (SPRF) imaging, allowing for simultaneous monitoring of reflectivity and fluorescence from discrete spatial regions. The instrument allows for high performance imaging and quantitative measurements with surface plasmon resonance, and surface plasmon induced fluorescence, with inexpensive off-the-shelf components. 相似文献
5.
For many years, the search for efficient surface plasmon polariton (SPP) excitation mechanisms has been a recurring matter in the development of compact plasmonic devices. In this work, we excited SPPs illuminating a subwavelength metallic ridge with a focused spot to characterize the coupling efficiency by varying the incidence angle of the excitation beam from ??50 to 50°. The intensity distribution of the excited SPPs was measured using leakage radiation microscopy to determine the relative coupling efficiency in the wavelength interval from 740 to 840 nm. We modeled the excitation efficiency as a function of the incidence angle using a simple analytical diffraction model. Two ridges of different width (200 and 500 nm) were used to compare results and validate the model. The experimental results show a higher coupling efficiency at oblique incidence, where the coupling was enhanced by factors of 2× for the 500-nm-wide ridge, and 3× for the 200-nm-wide ridge, as well as unidirectional SPP excitation. The experimental results are in good agreement with the proposed model. 相似文献
8.
生物分子的活性功能是通过分子之间的相互作用来实现的,了解这种相互作用的关系时生命科学的研究及揭示生命发生发展的基本机制具有着重要的意义.基于表面等离子共振(SPR)的分析分子相互作用(BIA)的技术是新型的生物传感技术,其无需标、能实时跟踪检测生物分子间结合、解离的整个过程,通过分析传感图谱获取分子相互作用的模式和动力学常数等方面的信息.SPR是研究生物分子相互作用的强有力工具,SPR技术已被广泛应用于生命科学领域的研究,并且显示出广阔的应用前景.概述了SPR技术原理、分析方法及其评述了其存在的问题. 相似文献
9.
The labeling strategy with gold nanoparticles for the conventional surface plasmon resonance (SPR) signal enhancement has been frequently used for the sensitive determination of small molecules binding to its interaction partners. However, the influence of gold nanoparticles with different size and shape on SPR signal is not known. In this paper, three kinds of gold nanoparticles, namely nanorods, nanospheres, and nanooctahedrons with different size, were prepared and used to investigate their effects on the conventional SPR signal at a fixed excitation wavelength 670 nm. It was found that the SPR signal (i.e., resonant angle shift) was varied with the shapes and sizes of gold nanoparticles in suspension at a fixed concentration due to their different plasmon absorbance bands. For gold nanorods with different longitudinal absorbance bands, three conventional SPR signal regions could be clearly observed when the gold nanorod suspensions were separately introduced onto the SPR sensor chip surface. One region was the longitudinal absorbance bands coinciding with or close to the SPR excitation wavelength that suppressed the SPR angle shift. The second region was the longitudinal absorbance bands at 624 to 639 and 728 to 763 nm that produced a moderate increase on the SPR resonant angle shift. The third region was found for the longitudinal absorbance bands from 700 to 726 nm that resulted in a remarkable increase in the SPR angle shift responses. This phenomenon can be explained on the basis of calculation of the correlation of SPR angle shift response with the gold nanorod longitudinal absorbance bands. For nanospheres and nanooctahedrons, the SPR angle shift responses were found to be particle shape and size dependent in a simple way with a sustaining increase when the sizes of the nanoparticles were increased. Consequently, a guideline for choosing gold nanoparticles as tags is suggested for the SPR determination of small molecules with binding to the immobilized interaction partners. 相似文献
10.
We demonstrate directional enhanced fluorescence emission from fluorophores located above gold wire gratings. In contrast
to previous studies on corrugated films, efficient coupling was recorded for multiple plasmon modes associated with both the
active and substrate side of the wires. This difference is likely due to the subtle differences in how light interacts with
corrugated films versus metal films with periodic subwavelength slots. For corrugated films, coupling between modes on opposite
sides of the grating are out of phase, and therefore plasmon modes on the opposite side of the grating are only weakly excited.
For wire gratings, transmission and reflection features have been modeled well with a dynamical diffraction model that includes
surface plasmons, which allows for efficient coupling to surface plasmon modes on both sides of the grating. We also compared
the two mechanisms for fluorescent enhancement, namely the intense electromagnetic field associated with surface plasmons
and excited fluorophores radiating via surface plasmon modes. We found the latter mechanism clearly dominant. 相似文献
11.
With this study, we prove that an asymmetric bimetallic structure can support long-range surface plasmon (LRSP) and propose a procedure for its optimization. By applying different criteria we prove that the plasmon which is supported by the structure is indeed LRSP. Unlike all known asymmetric structures supporting LRSP, our structure provides prism excitation and can be used as a biochip for biosensing. Moreover, we show that the structure supports a plasmon with the same propagation constant as LRSP and which is excited at the interface of metal and buffer. This plasmon can be used as a reference channel providing information for the temperature of the structure. 相似文献
12.
Metasurfaces are made of two-dimensional arrays of subwavelength nanostructures that form a spatially varying optical response, to control the wave fronts of optical waves. As the feature size of its constituent materials is nanoscale, investigation of the light-nanostructure interactions in the near field is critical for understanding the novel properties of metasurfaces. Here, we used a scanning near-field optical microscope (SNOM) to observe the near-field distribution of surface plasmon polaritons (SPPs) from a ring-shaped metasurface under illumination of circularly polarized light. It was found that with an additional degree of freedom of the geometric phase provided by the regularly arranged metamolecules, control over the near-field interference of the SPPs can be achieved, which is governed by the metasurface geometric symmetry that can be tuned by its topological charge. Meanwhile, the planar chiral character of the metamolecules exerts a deep influence on the near-field interference patterns. Our results can pave the way for active control of SPP propagation in near fields and have potential applications in highly integrated optical communication systems. 相似文献
13.
裂解多糖单加氧酶(lytic polysaccharide monooxygenases,LPMOs)是一类新发现的铜离子依赖性的氧化酶,常具有多种模块化组合,能够高效氧化降解生物质多糖.LPMOs的催化结构域为β三明治结构,活性中心含有一个铜离子.该酶的催化反应过程相对于糖苷水解酶类更加复杂,LPMOs结合底物后,首先要接受电子供体提供的电子,通过电子传递链传递给活性中心的Cu[Ⅱ],将其还原为Cu[Ⅰ],Cu[Ⅰ]结合并活化分子氧后,再氧化降解多糖链的糖苷键,生成氧化产物和非氧化产物.近年来的研究表明,在木质纤维素降解酶系中加入LPMOs能显著提高其对结晶纤维素的转化效率,因此LPMOs相关研究的深入开展可以拓展人们对其高效降解机制的认识,从而为高效降解酶系的复配以降低工业规模的生产成本等提供理论指导.本文综述了该领域相关研究的最新进展,分析了LPMOs潜在的研究方向与工业化应用的前景. 相似文献
14.
Semiconductor surface plasmon polariton (SPP) waveguide has unique optical properties and compatibility with existing integrated circuit manufacturing technology; thus, SPP devices of semiconductor materials have wide application potential. In this study, a new integrated graphene SPP waveguide is designed using the bottom and top roles of graphene. Moreover, a T waveguide structure is designed by InGaAs of semiconductor gain, with rectangular GaAs material on both sides. The structure adopts light to stimulate the SPP, where its local area is enhanced by the interaction between two interface layers and a semiconductor gain and where its frequency can be adjusted by the thickness of the graphene. Characteristic analysis reveals the coupling between the T semiconductor gain and the SPP mode. The propagation distance of the waveguide can reach 75 cm, the effective mode field is approximately 0.0951 λ 2, the minimum of gain threshold is approximately 2992.7 cm ?1, and the quality factor (FOM) can reach 180. The waveguide structure which provides stronger localization can be compatible with several optical and electronic nanoscale components. That means, it can provide light for surface plasmon circuit and also can provide a great development in the low-threshold nanolaser. 相似文献
15.
Linear clusters made by tightly connecting two or more metallic nanoparticles have new types of surface plasmon resonances as compared with isolated nanoparticles. These new resonances are sensitive to the size of the junction and to the number of interconnected particles and are described by eigenmodes of a boundary integral equation. This formulation allows effective separation of geometric and shape contribution from electric properties of the constituents. Results for particles covered by a thin shell are also provided highlighting ultrasensitive sensing applications. The present analysis sheds a new light on the interpretation of recent experiments. 相似文献
16.
While an array of technologies based on radioactive labels or luminescent tags are dominant in modern biomedical research
on DNA, surface plasmon resonance (SPR) and SPR imaging measurements are sensitive, rapid, and label-free. This review summarizes
recent advances in the development of SPR and coupled techniques and their applications in DNA research, including the gene
analysis at trace levels and studies of DNA–protein and DNA–drug interactions. 相似文献
17.
An innovative and automated method for the at-line monitoring of secreted protein was developed by harnessing a Surface Plasmon Resonance-based biosensor to a bioreactor. The proof of concept was performed by following at-line the relative concentration of a secreted protein produced by transient transfection of mammalian cells in a bioreactor. Our results suggest that our approach can be readily applied to the at-line determination of both protein concentration and bioactivity. Our experimental setup and strategy can thus satisfy the needs related to the development of novel bioprocess control protocols in the context of the new process analytical technology that arises in the biopharmaceutical industry. 相似文献
18.
The remote-excitation polarization-dependent surface enhanced Raman scattering (SERS) induced by plasmonic waveguide is used to investigate the surface catalysis reaction of 4-nitrobenzenethiol converting to p,p′-dimercaptoazobenzene. The propagating surface plasmon polaritons along single-crystalline nanowires can be coupled by the crossed nanowire as nanoantenna for generating massive electromagnetic field enhancement in the nanogap. The remote-excitation SERS spectra in the nanogap reveal the occurrence of a surface catalysis reaction. The time-dependent remote-excitation SERS spectra further confirmed such surface catalysis reaction. This novel sensitive technology could lead to miniaturized photonics and realize high-resolution microscopy/spectroscopy used in the field of remote catalysis reaction. 相似文献
20.
The tunability of propagation properties of surface plasmon polariton (SPP) modes in a waveguide formed by two parallel graphene layers separated by a dielectric layer is studied. For this purpose, the dispersion equation of the structure is numerically solved and the effects of applied bias voltage, the role of effective structural parameters, and electron–phonon scattering rate on the propagation of symmetric and antisymmetric SPP waves are investigated. The results of calculations show that considering the electron–phonon scattering rate as a function of Fermi energy and temperature leads to a considerable decrease in the propagation length of SPPs. As the main result of this work, tuning the propagation characteristics of SPPs is possible by varying any of the parameters such as applied voltage, thickness of insulating layer between two graphene layers and permittivities of dielectric layers, and finally the temperature. It is found that antisymmetric mode benefits from a larger propagation length in comparison with that of the symmetric mode. 相似文献
|