首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Three different assay procedures have been used to quantitate the levels of soybean (Glycine max [L.] Merr.) lectin in various tissues of soybean plants. The assays used were a standard hemagglutination assay, a radioimmunoassay, and an isotope dilution assay. Most of the lectin in seeds was found in the cotyledons, but lectin was also detected in the embryo axis and the seed coat. Soybean lectin was present in all of the tissues of young seedlings, but decreased as the plants matured and was not detectable in plants older than 2 to 3 weeks. Soybean lectin isolated from seeds of several soybean varieties were identical when compared by several methods.  相似文献   

2.
The bacterial isopentenyl transferase (ipt) gene involved in cytokinin biosynthesis was fused with a seed-specific lectin promoter from soybean and introduced into tobacco. Under the control of the lectin promoter, the expression of the ipt gene increased cytokinin levels and promoted cell division in the embryo in transgenic tobacco seeds. Compared with controls, the number of plerome cell layers and the cell number of cotyledons and pleromes were significantly increased from 16 DAF (days after flowering); the embryo diameter of transgenic tobacco was enlarged at 16, 19, and 21 DAF (16.1%, 12.7%, and 13.9% increase, respectively). Furthermore, the soluble protein content of the transgenic mature seeds was increased by 9.8–22.2% and the dry weight of transgenic tobacco seeds was increased by 8.8–21.8% compared with that of controls. The transgenic tobacco seedlings also grew quickly and a greater increase in fresh weight compared with controls was observed at 20 and 35 days after germination (average 14% and 8% increase above controls, respectively).  相似文献   

3.
Virus-induced gene silencing (VIGS) has great potential as a reverse-genetics tool in plant genomics. In this study, we examined the potential of VIGS in soybean seeds and the emergence stage of soybean plants using Apple latent spherical virus (ALSV) vectors. Inoculation of an ALSV vector (soyPDS-ALSV) carrying a fragment of the soybean phytoene desaturase (soyPDS) gene into soybean seedlings resulted in a highly uniform photo-bleached phenotype, typical of PDS inhibition, on the upper leaves throughout plant growth. The photo-bleached phenotype was also found on all immature pods, all seed coats, and about 50% embryos of seeds on soybean plants infected with soyPDS-ALSV. Infection with an ALSV vector (soyIFS2-ALSV) having a fragment of soybean isoflavone synthase 2 (soyIFS2) gene also led to a reduction of the levels of both soyIFS2- and soyIFS1- mRNAs and an isoflavone content in the cotyledons of about 36% mature seeds of infected soybean plants. Furthermore, VIGS of soyPDS was induced in the next generation plants by the seed transmission of soyPDS-ALSV. Thus ALSV vectors will be useful for studying gene functions in the reproductive stages and early growth stages, such as emergence and cotyledon stages, in addition to the vegetative stages of soybean plants.  相似文献   

4.
Despite their medicinal, pharmaceutical, and nutritional importance of isoflavones, the genetic basis controlling the amounts of isoflavones in soybean seeds is still not well understood. The main obstacle is the great variability in the content of isoflavone in seeds harvested from different environments. In this study, quantitative trait loci (QTL) for the content of different isoflavones including daidzein, genistein, and glycitein were investigated in a population of recombinant inbred lines derived from the cross of “Hwangkeum” (Glycine max) by “IT182932” (Glycine soja). Seeds analyzed were harvested in three different experimental environments. QTL analyses for isoflavone content were conducted by composite interval mapping across a genomewide genetic map. Two major QTL were mapped to soybean chromosomes 5 and 8, which were designated QDZGT1 and QDZGT2, respectively. Both loci have not been previously reported in other isoflavone sources. The results from this study will be useful in cloning genes that can control the contents of isoflavones in soybean and for the development of soybean lines containing a high or low isoflavone content.  相似文献   

5.
The regulatory function of sucrose in the activity of lipid-degrading enzymes was investigated in germinating seeds of yellow lupin (Lupinus luteus L.), white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet). The study was conducted on isolated embryo axes, excised cotyledons and seedlings cultured in vitro for 96 h on medium with 60 mM sucrose or without the sugar. The activity of lipase (lipolysis), acyl-CoA oxidase and catalase (fatty acid β-oxidation) was enhanced in all studied organs cultured on medium without sucrose. The activity of cytosolic aconitase (glyoxylate cycle) was stimulated by sucrose in seedling axes and isolated embryo axes, whereas in seedling cotyledons and excised cotyledons, it was inhibited. The regulatory function of sucrose in phosphoenolpyruvate carboxykinase (gluconeogenesis) was observed only in isolated embryo axes and the activity was lower in carbohydrate deficiency conditions. The peculiar features of storage lipid breakdown in germinating lupin seeds and its regulation by sucrose are discussed.  相似文献   

6.
Twelve independent lines were transformed by particle bombardment of soybean embryogenic suspension cultures with the tobacco anthranilate synthase (ASA2) promoter driving the uidA (beta-glucuronidase, GUS) reporter gene. ASA2 appears to be expressed in a tissue culture specific manner in tobacco (Song H-S, Brotherton JE, Gonzales RA, Widholm JM. Tissue culture specific expression of a naturally occurring tobacco feedback-insensitive anthranilate synthase. Plant Physiol 1998;117:533-43). The transgenic lines also contained the hygromycin phosphotransferase (hpt) gene and were selected using hygromycin. All the selected cultures or the embryos that were induced from these cultures expressed GUS measured histochemically. However, no histochemical GUS expression could be found in leaves, stems, roots, pods and root nodules of the plants formed from the embryos and their progeny. Pollen from some of the plants and immature and mature seeds and embryogenic cultures initiated from immature cotyledons did show GUS activity. Quantitative 4-methylumbelliferyl-glucuronide (MUG) assays of the GUS activity in various tissues showed that all with observable histochemical GUS activity contained easily measurable activities and leaves and stems that showed no observable histochemical GUS staining did contain very low but measurable MUG activity above that of the untransformed control but orders of magnitude lower than the constitutive 35S-uidA controls used. Low but clearly above background levels of boiling sensitive GUS activity could be observed in the untransformed control immature seeds and embryogenic cultures using the MUG assay. Thus in soybean the ASA2 promoter drives readily observable GUS expression in tissue cultures, pollen and seeds, with only extremely low levels seen in vegetative tissues of the plants. The ASA2 driven expression seen in mature seed was, however, much lower than that seen with the constitutive 35S promoter; less than 2% in seed coats and less than 0.13% in cotyledons and embryo axes. The predominate tissue culture specific expression pattern of the ASA2 promoter may be useful for genetic transformation of crops.  相似文献   

7.
Seeds of six soybean lines (Glycine max (L.) Merr. cv. Columbia, D68-127, Norredo, Sooty, T-102, Wilson 5) have been reported to lack the 120 000 dalton soybean lectin. Immunofiffusion and radioimmunoassay using anti-soybean lectin immunoglobulin failed to detect the lectin in seeds of five lines, but D68-127 seeds contained as much soybean lectin as the control line, Harosoy 63. The D68-127 seed lactin could be purified by affinity chromatography on Sepharose-N-caproylgalactosamine, and was indistinguishable from the conventional soybean lectin by the following criteria: electrophoretic migration in acidic and alkaline buffers, subunit molecular weight and composition, analytical isoelectric focusing, gel filtration chromatography.Phosphate buffered saline extracts of roots, hypocotyls, stems, and leaves of 3–66-day-old Norredo and Harosoy 63 plants lacked soybean lectin, as determined by hemagglutination and radioimmunoassay (detection limit: 1.4 μg soybean lectin/g dry weight tissue). Cotyledons of Harosoy 63 (but not Norredo) contained large quantities of the lectin, which diminished as the plants aged. 5-day-old roots and hypocotyls of 20 soybean lines did not contain soybean lectin. Roots of Columbia, Norredo, Sooty, T-102, Wilson 5, and Harosoy 63 (control) were modulated by a variety of strains of Rhizobium japonicum and Rhizobium sp.  相似文献   

8.
Abscisic Acid and its relationship to seed filling in soybeans   总被引:30,自引:10,他引:20       下载免费PDF全文
The effect of exogenous abscisic acid (ABA) on the rate of sucrose uptake by soybean (Glycine max L. Merr.) embryos was evaluated in an in vitro system. In addition, the concentrations of endogenous ABA in seeds of three soybean Plant Introduction (PI) lines, differing in seed size, were commpared to their seed growth rates. ABA (10−7 molar) stimulated in vitro sucrose uptake in soybean (cv `Clay') embryos removed from plants grown in a controlled environment chamber, but not in embryos removed from field-grown plants of the three PI lines. However, the concentration of ABA in seeds of the three field-grown PI lines correlated well with their in situ seed growth rates and in vitro [14C] sucrose uptake rates.

Across genotypes, the concentration of ABA in seeds peaked at 8.5 micrograms per gram fresh weight, corresponding to the time of most rapid seed growth rate, and declined to 1.2 micrograms per gram at physiological maturity. Seeds of the large-seeded genotype maintained an ABA concentration at least 50% greater than that of the small-seeded genotype throughout the latter half of seed filling. A higher concentration of ABA was found in seed coats and cotyledons than in embryonic axes. Seed coats of the large-seeded genotype always had a higher concentration of ABA than seed coats of the small-seeded line. It is suggested that this higher concentration of ABA in seed coats of the large-seeded genotype stimulates sucrose unloading into the seed coat apoplast and that ABA in cotyledons may enhance sucrose uptake by the cotyledons.

  相似文献   

9.
Membrane fractions from seedlings of four soybean [Glycine max (L.) Merr.] lines were examined by radioimmunoassay and hemagglutination assay for the 120,000 dalton soybean lectin. Two of the lines (Sooty and T-102) are genotypically lele and lack buffer-soluble soybean lectin; the remaining two lines (Beeson and Harosoy 63) are Le and produce seeds that contain the lectin (Su et al. 1980 Biochim. Biophys. Acta 629: 292-304). Both Triton X-100 (0.5% v/v) and nonidet P-40 (0.05% v/v) solubilized soybean lectin from membrane fractions of Le cotyledons. Triton X-100 interfered substantially with the assay of protein and hemagglutinating activity and was unacceptable for use in quantitative measurements. The nonidet P-40-solubilized soybean lectin from Le cotyledons was consistently present both in washed 13,000g and 82,500g membrane fractions, but it accounted for less than 1.5% of the total (buffer-soluble plus membrane-bound) soybean lectin. The membrane lectin was purified by the affinity chromatography procedure devised for soluble soybean lectin, and it was immunologically indistinguishable from authentic soybean lectin. Membrane fractions from Le cotyledons contained insignificant amounts of radioisotope-labeled soybean lectin that had been added during homogenization, and purified membrane fractions did not bind the lectin in the presence of the hapten, d-galactose. These controls make it unlikely that the membrane soybean lectin was of cytoplasmic origin. Soybean lectin and other hemagglutinins were not present in buffer-soluble or membrane fractions from lele cotyledons or from roots and hypocotyls of any of the lines.  相似文献   

10.
Regulation of starch accumulation in yellow (Lupinus luteus L.), white (L. albus L.), and Andean lupin (L. mutabilis Sweet) developing and germinating seeds was investigated. Research was conducted on cotyledons isolated from developing seeds as well as on organs of germinating seeds, that is, isolated embryo axes, excised cotyledons, and seedling axes and cotyledons. All organs were cultured in vitro for 96 h in different carbon (60 mM sucrose) and nitrogen (35 mM asparagine or 35 mM nitrate) conditions. Ultrastructure observation showed one common pattern of changes in the number and size of starch granules caused by sucrose, asparagine, and nitrate in both developing and germinating seeds. Sucrose increased the number and size of starch granules. Asparagine additionally increased starch accumulation (irrespective of sucrose nutrition) but nitrate had no effect on starch accumulation. Asparagine treatment resulted in a significant decrease in soluble sugar level in all organs of germinating lupin seeds of the three species investigated. The above-mentioned changes were most clearly visible in white lupin organs. In white lupin, starch granules were visible even in cells of sucrose-starved isolated embryo axes where advanced autophagy occurs. The importance of asparagine-increased starch content in the creation of a strong source–sink gradient in developing and germinating lupin seeds is discussed.  相似文献   

11.
Lin PP  Egli DB  Li GM  Meckel L 《Plant physiology》1984,76(2):366-371
Active polyamine metabolism occurs in Glycine max (L.) seeds during development. Most (≥97%) of putrescine (Put), spermidine (Spd), spermine (Spm), and cadaverine (Cad) are present as free forms in the growing embryo. In the cotyledon or embryonic axis, Put decreases to a nearly undetectable level, while Spd level sharply increases as seed dry weight accumulation progresses. Spm level in the axis also increases along with the Spd level. There is little change in Spm level in the cotyledons. Maturation and dehydration results in a slight reduction of Spd level in the cotyledons. Cad is present in relatively large quantities (5.5-12 micromoles per gram dry weight) in the axes of mature soybean seeds. Only traces of Cad, as expressed on a dry weight basis, are found in the developing or mature cotyledons. The synthesis and accumulation of Cad in the axis begins at the time when the axis or the seed accumulates 30 to 50% of its maximum dry weight. The Cad accumulation (0.8 nanomole per axis per day) proceeds until the later stages of dehydration. When soybean plants are subjected to complete defoliation and shade during the midpoint of seed maturation, Cad accumulation in the axis and seed dry weight accumulation ceased almost immediately. The treatment, however, does not affect the viability of soybean seeds.  相似文献   

12.
Lathyrus ochrus (L.) DC lectin was found to be localized within the protein bodies of both the cotyledons and embryo axis of mature seeds, by using immunocytochemical-labelling techniques involving rabbit antibodies against lectin, followed by goat antibodies against rabbit immunoglobulins (IgG) either fluoresceine-labelled (light microscopy) or adsorbed on colloidal gold particles (electron microscopy). Deposition of lectin inside the protein bodies was studied during seed development, together with its disappearance associated with the protein bodies coalescence occurring during seed germination. In both cases, a parallel quantification of lectin in ripening seeds and seedlings was carried out by radial immunodiffusion with rabbit antibodies against lectin. Our failure to detect lectin in other parts of the plant during its life-cycle suggests that lectin remains associated only with the protein bodies of seeds and seedlings.  相似文献   

13.
14.
Abscisic acid (ABA) concentrations and growth rates of developing soybean (Glycine max [L.] Merr. cv. Wye) seeds and pod walls were determined from anthesis to maturation using high pressure liquid chromatographic techniques. Developing soybean seeds contain up to 12,200 ng/g fresh weight of ABA compared to 330 ng/g fresh weight for pod walls. In the developing seeds ABA levels correlated with growth rates, being the highest during the most active growth period of seed enlargement, and then decreasing to less than 10 ng/g fresh weight at maturity. Higher levels of ABA were found to occur in the cotyledons and seed coats than the root-shoot axes at 21 days postanthesis. The time required for excised root-shoot axes to initiate growth in liquid culture decreased as seed development progressed and ABA levels of the seeds declined.  相似文献   

15.
Characterization of sugar content and enzyme activity in germinating soybean (Glycine max L. Merrell) seeds led to the discovery of sorbitol accumulating in the axes during germination. The identity of sorbitol was confirmed by relative retention times on high-performance liquid chromatography and gas liquid chromatography and by mass spectra identical with authentic sorbitol. Accumulation of sorbitol in the axes started on day 1 of germination as sucrose decreased and glucose and fructose increased. Sucrose also decreased in the cotyledons, but there was no accumulation of sorbitol, glucose, or fructose. Accumulation of sorbitol and hexoses was highly correlated with increased invertase activity in the axes, but not with sucrose synthase and sucrose phosphate synthase activities. Sucrose synthase activity was relatively high in the axes, whereas the activity of sucrose phosphate synthase was relatively high in the cotyledons. Ketose reductase and aldose reductase were detected in germinating soybean axes, but not in cotyledons. Fructokinase and glucokinase were present in both axes and cotyledons. The data suggest a sorbitol pathway functioning in germinating soybean axes, which allows for the interconversion of glucose and fructose with sorbitol as an intermediate.  相似文献   

16.
Plant secondary metabolites have always been a focus of study due to their important roles in human medicine and nutrition. We transferred the isoflavone synthase (IFS) gene into soybean [Glycine max (L.) Merr.] using the Agrobacterium-mediated transformation method in an attempt to produce transformed soybean plants which produced increased levels of the secondary metabolite, isoflavone. Although the trial to produce transgenic plant failed due to unestablished hygromycin selection, transformed callus cell lines were obtained. The induction rate and degree of callus were similar among the three cultivars tested, but light illumination positively influenced the frequency of callus formation, resulting in a callus induction rate of 74% for Kwangan, 67% for Sojin, and 73% for Duyou. Following seven to eight subcultures on selection media, the isoflavone content of the transformed callus lines were analyzed by high-performance liquid chromatography. The total amount of isoflavone in the transformed callus cell lines was three- to sixfold higher than that in control callus or seeds. Given the many positive effects of isoflavone on human health, it may be possible to adapt our transformed callus lines for industrialization through an alternative cell culture system to produce high concentrations of isoflavones.  相似文献   

17.
18.
Endogenous gibberellin-like activity was determined in dry pea seeds (Pisum sativum cv. Bördi), in cotyledons and axes of germinating pea seeds and also in excised cotyledons and axes. During the first two days of pea seed germination, neither the embryonic axes nor the cotyledons show a mutual influence on gibberellin activity, but this appears after 72–96 h of germination. The gibberellin-like activity m cotyledons and axes of germinating seeds increased during the same period, but it decreased in isolated axes and excised cotyledons.  相似文献   

19.
Germination of lupine (Lupinus luteus L.) seeds was accompanied by an increase in concentration of free radicals with g 1 and g 2 values of 2.0056 ± 0.0003 and 2.0033 ± 0.0005, respectively. The highest intensity of free radical signal was observed in embryo axes immediately after radicle protruded through the seed coat. Hydrogen peroxide accumulated in embryonic axes and cotyledons during imbibition before the onset of germination in the seed population. The activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) rose progressively in embryo axes. In cotyledons SOD activity did not change significantly, while that of CAT increased during germination. The enhancement of Cu, Zn-SODs and Mn-SOD isoforms in embryonic axes was observed. A new isoform of catalase was synthesized, suggesting that it plays a relevant role during germination. SOD and CAT activities were detected in dry seeds. Free radical generation and response of antioxidative enzymes differed between embryo axes and cotyledons during the germination timecourse.  相似文献   

20.
The cotyledons and embryo axes of seeds of Phaseolus vulgaris L. cv. Pinto contained 16% of the total calcium in the seed. The remaining 84% was in the testas. There was no evidence that calcium in testas was used in seedling growth or that calcium was leached from seedlings during growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号