首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The secreted form of the PilB protein was proposed to be involved in pathogen survival fighting against the defensive host's oxidative burst. PilB protein is composed of three domains. The central and the C-terminal domains display methionine sulfoxide reductase A and B activities, respectively. The N-terminal domain, which possesses a CXXC motif, was recently shown to regenerate in vitro the reduced forms of the methionine sulfoxide reductase domains of PilB from their oxidized forms, as does the thioredoxin 1 from E. coli, via a disulfide bond exchange. The thioredoxin-like N-terminal domain belongs to the cytochrome maturation protein structural family, but it possesses a unique additional segment (99)FLHE (102) localized in a loop. This segment covers one edge of the active site in the crystal structure of the reduced form of the N-terminal domain of PilB. We have determined the solution structure and the dynamics of the N-terminal domain from Neisseria meningitidis, in its reduced and oxidized forms. The FLHE loop adopts, in both redox states, a well-defined conformation. Subtle conformational and dynamic changes upon oxidation are highlighted around the active site, as well as in the FLHE loop. The functional consequences of the cytochrome maturation protein topology and those of the presence of FLHE loop are discussed in relation to the enzymatic properties of the N-terminal domain.  相似文献   

3.
4.
The DsbD protein is essential for electron transfer from the cytoplasm to the periplasm of Gram-negative bacteria. Its N-terminal domain dispatches electrons coming from cytoplasmic thioredoxin (Trx), via its central transmembrane and C-terminal domains, to its periplasmic partners: DsbC, DsbE/CcmG, and DsbG. Previous structural studies described the latter proteins as Trx-like folds possessing a characteristic C-X-X-C motif able to generate a disulfide bond upon oxidation. The Escherichia coli nDsbD displays an immunoglobulin-like fold in which two cysteine residues (Cys103 and Cys109) allow a disulfide bond exchange with its biological partners.We have determined the structure in solution and the backbone dynamics of the C103S mutant of the N-terminal domain of DsbD from Neisseria meningitidis. Our results highlight significant structural changes concerning the beta-sheets and the local topology of the active site compared with the oxidized form of the E. coli nDsbD. The structure reveals a "cap loop" covering the active site, similar to the oxidized E. coli nDsbD X-ray structure. However, regions featuring enhanced mobility were observed both near to and distant from the active site, revealing a capacity of structural adjustments in the active site and in putative interaction areas with nDsbD biological partners. Results are discussed in terms of functional consequences.  相似文献   

5.
Meningococcal infection remains a worldwide health problem, and understanding the mechanisms by which Neisseria meningitidis evades host innate and acquired immunity is crucial. The complement system is vital for protecting individuals against N. meningitidis. However, this pathogen has evolved several mechanisms to avoid killing by human complement. Bacterial structures such as polysaccharide capsule and those which mimic or bind host molecules function to prevent complement-mediated lysis and phagocytosis. This review provides an update on the recent findings on the diverse mechanisms by which N. meningitidis avoids complement-mediated killing, and how polymorphisms in genes encoding human complement proteins affect susceptibility to this important human pathogen.  相似文献   

6.
A physical map of the chromosome of Neisseria meningitidis strain 44/76, which belongs to the epidemic clone ET-5, was constructed. DNA fragments obtained after SfiI and NheI digestion were resolved by pulsed field gel electrophoresis (PFGE). The overall arrangement of 26 genetic markers localized on the 2.3-Mb chromosome was conserved in comparison with that in meningococcal strains B1940 and Z2491. Simplified physical maps of 29 additional strains belonging to the ET-5 complex isolated from various parts of the world were compared with that of strain 44/76. Ten distinct patterns of hybridization were identified. While two of the seven probes hybridized to fragments of the same size in all strains, the remaining probes hybridized to different fragments, in some cases to fragments not adjacent on the chromosome of 44/76. These results indicated the occurrence of genetic rearrangements in the genome of the ET-5 meningococcal clone in the course of its epidemic spread. Received: 17 November 1999 / Accepted: 28 December 1999  相似文献   

7.
Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae are major bacterial agents of meningitis. They each bind the 37/67-kDa laminin receptor (LamR) via the surface protein adhesins: meningococcal PilQ and PorA, H. influenzae OmpP2 and pneumococcal CbpA. We have previously reported that a surface-exposed loop of the R2 domain of CbpA mediates LamR-binding. Here we have identified the LamR-binding regions of PorA and OmpP2. Using truncated recombinant proteins we show that binding is dependent on amino acids 171–240 and 91–99 of PorA and OmpP2, respectively, which are predicted to localize to the fourth and second surface-exposed loops, respectively, of these proteins. Synthetic peptides corresponding to the loops bound LamR and could block LamR-binding to bacterial ligands in a dose dependant manner. Meningococci expressing PorA lacking the apex of loop 4 and H. influenzae expressing OmpP2 lacking the apex of loop 2 showed significantly reduced LamR binding. Since both loops are hyper-variable, our data may suggest a molecular basis for the range of LamR-binding capabilities previously reported among different meningococcal and H. influenzae strains.  相似文献   

8.
Neisseria meningitidis infection still remains a major life-threatening bacterial disease worldwide. The availability of bacterial genomic sequences generated a paradigm shift in microbiological and vaccines sciences, and post-genomics (comparative genomics, functional genomics, proteomics and a combination/evolution of these techniques) played important roles in elucidating bacterial biological complexity and pathogenic traits, at the same time accelerating the development of therapeutic drugs and vaccines. This article summarizes the most recent technological and scientific advances in meningococcal biology and pathogenesis aimed at the development and characterization of vaccines against the pathogenic meningococci.  相似文献   

9.
We report the nearly complete 1H, 13C, and 15N resonance assignments of the C103S mutant of the N-terminal domain of DsbD from Neisseria meningitides. Secondary structure determination using CSI method leads to the prediction of nine β-sheet parts.  相似文献   

10.
Two mouse sera against outer membrane proteins from a pathogenic Neisseria meningitidis strain and a commensal N. lactamica strain and two human sera from patients recovering from meningococcal meningitis were used to identify antigens common to pathogenic and commensal Neisseria species. Two major antigens of 55 kDa and 32 kDa, present in all N. meningitidis and N. lactamica strains tested, were demonstrable with all the sera used; the 55-kDa protein was iron-regulated. Demonstration of other common antigens was dependent on the serum used: a 65-kDa antigen was visualised with the human and the mouse anti-N. lactamica sera; a 37-kDa antigen identified as the meningococcal ferric binding protein (FbpA) was only detected with the mouse sera, and two antigens of 83 kDa and 15 kDa were only shown with the mouse anti-N. meningitidis serum. The results demonstrate the existence of several outer membrane antigens common to N. lactamica and N. meningitidis strains, in agreement with the hypothesis that natural immunity against meningitis is partially acquired through colonisation by commensal species, and open new perspectives for the design of vaccine formulations and the development of strategies for vaccination against meningitis.  相似文献   

11.
A major feature of Neisseria meningitidis is its ability to invade human brain meninges. To access the meninges, the bacteria must cross the blood-brain barrier (BBB), which is one of the tightest barriers in the body. Therefore, N. meningitidis must have evolved some type of sophisticated means to bypass the physical properties of this cellular barrier. As N. meningitidis is encapsulated when present in the bloodstream, this review will focus on the mechanisms that encapsulated N. meningitidis has developed to interact with host cells and will suggest ways in which these mechanisms may be helpful for crossing the BBB.  相似文献   

12.
NarE is a 16 kDa protein identified from Neisseria meningitidis, one of the bacterial pathogens responsible for meningitis. NarE belongs to the family of ADP-ribosyltransferases (ADPRT) and catalyzes the transfer of ADP-ribose moieties to arginine residues in target protein acceptors. Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and alter essential functions of eukaryotic cells. NarE is further the first ADPRT which could be shown to bind iron through a Fe-S center, which is crucial for the catalytic activity. Here we present the NMR solution structure of NarE, which shows structural homology to other ADPRTs. Using NMR titration experiments we could identify from Chemical Shift Perturbation data both the NAD binding site, which is in perfect agreement with a consensus sequence analysis between different ADPRTs, as well as the iron coordination site, which consists of 2 cysteines and 2 histidines. This atypical iron coordination is also capable to bind zinc. These results could be fortified by site-directed mutagenesis of the catalytic region, which identified two functionally crucial residues. We could further identify a main interaction region of NarE with antibodies using two complementary methods based on antibody immobilization, proteolytic digestion, and mass spectrometry. This study combines structural and functional features of NarE providing for the first time a characterization of an iron-dependent ADPRT.  相似文献   

13.
The first x-ray crystallographic structure of a CAZY family-52 glycosyltransferase, that of the membrane associated α2,3/α2,6 lipooligosaccharide sialyltransferase from Neisseria meningitidis serotype L1 (NST), has been solved to 1.95 Å resolution. The structure of NST adopts a GT-B-fold common with other glycosyltransferase (GT) families but exhibits a novel domain swap of the N-terminal 130 residues to create a functional homodimeric form not observed in any other class to date. The domain swap is mediated at the structural level by a loop-helix-loop extension between residues Leu-108 and Met-130 (we term the swapping module) and a unique lipid-binding domain. NST catalyzes the creation of α2,3- or 2,6-linked oligosaccharide products from a CMP-sialic acid (Neu5Ac) donor and galactosyl-containing acceptor sugars. Our structures of NST bound to the non-hydrolyzable substrate analog CMP-3F(axial)-Neu5Ac show that the swapping module from one monomer of NST mediates the binding of the donor sugar in a composite active site formed at the dimeric interface. Kinetic analysis of designed point mutations observed in the CMP-3F(axial)-Neu5Ac binding site suggests potential roles of a requisite general base (Asp-258) and general acid (His-280) in the NST catalytic mechanism. A long hydrophobic tunnel adjacent to the dimer interface in each of the two monomers contains electron density for two extended linear molecules that likely belong to either the two fatty acyl chains of a diglyceride lipid or the two polyethylene glycol groups of the detergent Triton X-100. In this work, Triton X-100 maintains the activity and increases the solubility of NST during purification and is critical to the formation of ordered crystals. Together, the mechanistic implications of the NST structure provide insight into lipooligosaccharide sialylation with respect to the association of substrates and the essential membrane-anchored nature of NST on the bacterial surface.  相似文献   

14.
Expression of the meningococcal transferrin receptor, detected by assay with human transferrin conjugated to peroxidase, was regulated by the level of iron in the medium. The transferrin receptor was identified by SDS-PAGE and Western blot analysis, as a 71,000 molecular weight iron-regulated outer membrane protein in Neisseria meningitidis B16B6. Growth studies with iron-deficient cells and competition binding experiments demonstrated that the meningococcal receptor was species-specific for human transferrin. Reciprocal competitive binding experiments and limited proteolysis of intact cells indicated that the transferrin and lactoferrin receptors are distinct.  相似文献   

15.
Two-dimensional structure of the Opc invasin from Neisseria meningitidis   总被引:2,自引:0,他引:2  
A two-dimensional structural model was devised for the Opc outer membrane protein invasin which contains 10 transmembrane strands and five surface-exposed loops. One continuous epitope recognized by three monoclonal antibodies was localized to the tip of loop 2 by synthetic peptides and site-directed mutagenesis while a second, discontinuous epitope recognized by a fourth antibody was localized to loops 4 and 5 by insertion mutagenesis. These monoclonal antibodies are bactericidal and inhibit adhesion and invasion. Most of the T-cell epitopes defined by Wiertz et al. (1996) were localized to the transmembrane strands. Oligonucleotides encoding a foreign epitope (∇) from Semliki Forest virus were inserted into Bgl II restriction sites created by site-directed mutagenesis. The ∇ epitopes inserted in all five predicted loops were recognized on the cell surface of live Escherichia coli bacteria by a monoclonal antibody and are exposed while ∇ epitopes in the N-terminus or three predicted turns were not. The results thus confirm important predictions of the model and define five permissive sites within surface-exposed loops which can be used to insert foreign epitopes.  相似文献   

16.
The meningococcal lactoferrin receptor is composed of the integral outer membrane protein LbpA and the peripheral lipoprotein LbpB. Homooligomeric complexes of LbpA and heterooligomers consisting of LbpA and LbpB were identified. Furthermore, five cell surface-exposed loops of LbpA were identified, which partially confirms a previously proposed topology model.  相似文献   

17.
The lgtB genes that encode beta-1,4-galactosyltransferases from Neisseria meningitidis ATCC 13102 and gonorrhoeae ATCC 31151 were isolated by a polymerase chain reaction using the pfu DNA polymerase. They were expressed under the control of lac and T7 promoters in Escherichia coli M15 and BL21 (DE3). Although the genes were efficiently expressed in E. coli M15 at 37 degrees C (33 kDa), most of the beta-1,4-galactosyltransferases that were produced were insoluble and proteolysed into enzymatically inactive polypeptides that lacked C-terminal residues (29.5 kDa and 28 kDa) during the purification steps. When the temperature of the cell growth was lowered to 25 degrees C, however, the solubility of the beta-1,4-galactosyltransferases increased substantially. A stable N-terminal his-tagged recombinant enzyme preparation could be achieved with E. coli BL21 (DE3) that expressed lgtB. Therefore, the cloned beta-1,4-galactosyltransferases were expressed under the control of the T7 promoter in E. coli BL21 (DE3), mostly to the soluble form at 25 degrees C. The proteins were easily purified to homogeneity by column chromatography using Ni-NTA resin, and were found to be active. The galactosyltransferases exhibited pH optimum at 6.5-7.0, and had an essential requirement for the Mn(+2) ions for its action. The Mg(+2) and Ca(+2) ions showed about half of the galactosyltransferase activities with the Mn(+2) ion. In the presence of the Fe(+2) ion, partial activation was observed with the beta-1,4-galactosyltransferase from N. meningitidis (64% of the enzyme activity with the Mn(+2) ion), but not from N. gonorrhoeae. On the other hand, the N(+2), Zn(+2), and Cu(+2) ions could not activate the beta-1,4- galactosyltransferase activity. The inhibited enzyme activity with the Ni(+2) ion was partially recovered with the Mn(+2) ion, but in the presence of the Fe(+2), Zn(+2), and Cu(+2) ions, the Mn(+2) ion could not activate the enzyme activities. Also, the beta-1,4-galactosyltransferase activity was 1.5-fold stimulated with the non-ionic detergent Triton X-100 (0.1-5 percent).  相似文献   

18.
Neisseria meningitidis carriers strains were isolated from 17-19 teenagers (n = 14) and recruits (n = 267). The longitudinal study comprises three meningococcal carriage trials performed on healthy young men during two--six months of their service in Polish military units. Altogether 54, 124 and 89 meningococcal strains were obtained during spring 1998 and autumn 1998, 1999 trials. Sixty two percent of meningococcal carrier strains were non-groupable, however among the remaining strains, serogroup B was predominant (29.5%). During spring 1998 and autumn 1999 trials the predominant phenotypes were N. meningitidis NG:21:P1.7, but during the autumn 1998 NG:21:P1.7 or NG:NT:P1.5. Ribotyping of type 21 and/or subtype P1.7 strains (n = 27) showed presence of 2 main ribotypes. Pulsed Field Gel Electrophoresis of consecutive isolates recovered from the same carrier showed great similarity of the patterns.  相似文献   

19.
Crucial virulence determinants of disease causing Neisseria meningitidis species are their extracellular polysaccharide capsules. In the serogroups W and Y, these are heteropolymers of the repeating units (→6)-α-d-Gal-(1→4)-α-Neu5Ac-(2→)n in NmW and (→6)-α-d-Glc-(1→4)-α-Neu5Ac-(2→)n in NmY. The capsule polymerases, SiaDW and SiaDY, which synthesize these highly unusual polymers, are composed of two predicted GT-B fold domains separated by a large stretch of amino acids (aa 399–762). We recently showed that residues critical to the hexosyl- and sialyltransferase activity are found in the predicted N-terminal (aa 1–398) and C-terminal (aa 763–1037) GT-B fold domains, respectively. Here we use a mutational approach and synthetic fluorescent substrates to define the boundaries of the hexosyl- and sialyltransferase domains. Our results reveal that the active sialyltransferase domain extends well beyond the predicted C-terminal GT-B domain and defines a new glycosyltransferase family, GT97, in CAZy (Carbohydrate-Active enZYmes Database).  相似文献   

20.
Natural sequence variation was investigated among serogroup A subgroup IV-1 Neisseria meningitidis isolated from diseased patients and healthy carriers in The Gambia, West Africa. The frequencies of DNA import were analysed by sequencing fragments of four linked genes encoding the immunogenic outer membrane proteins TbpB (transferrin binding protein B) and OpaA (an adhesin) plus two housekeeping enzymes. Seventeen foreign tbpB alleles were independently imported into the 98 strains tested, apparently due to immune selection. The median size of the imported DNA fragments was 5 kb, resulting in the occasional concurrent import of linked housekeeping genes by hitchhiking. Sequences of tbpB from other strains of N. meningitidis as well as commensal Neisseria lactamica and Neisseria spp. isolated from the same geographical area revealed that these species share a common tbpB gene pool and identified several examples of interspecific genetic exchange. These observations indicate that recombination can be more frequent between related species than within a species and indicate that effective vaccination against serogroup B meningococcal disease may be difficult to achieve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号