首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tobacco cells (Nicotiana tabacum L. Bright Yellow T-13) exposed to harmful naphthols accumulate them as glucosylated and further modified compounds [Taguchi et al. (2003a) Plant Sci. 164, 231-240]. In this study, we identified the accumulated compounds to be 6'-O-malonylated glucosides of naphthols. Cells treated with various phenolic compounds accumulated the flavonoids mainly as malonylglucosides. To clarify the function of this malonylation in tobacco, we isolated the cDNA encoding a malonyltransferase (NtMaT1) from a cDNA library derived from tobacco cells. The heterologous expression of the gene in Escherichia coli revealed that the recombinant enzyme had malonyltransferase activity against several phenolic glucosides such as flavonoid 7-O-glucosides, flavonoid 3-O-glucosides and naphthol glucosides. The substrate preference of the enzyme was similar to that of the tobacco cell extract. Malonylation activity in the transgenic cells markedly decreased with the suppression of the expression of NtMaT1 mRNA in tobacco BY-2 cells by RNA interference. The compounds administered to the transgenic cells were accumulated in the cells as glucosides or other modified compounds in place of malonylglucosides. These results show that NtMaT1 is the main catalyst of malonylation on glucosides of xenobiotic flavonoids and naphthols in tobacco plants.  相似文献   

2.
Tobacco cells (Nicotiana tabacum L.) accumulate harmful naphthols in the form of malonylated glucosides ( Taguchi et al., 2005 ). Here, we showed that the malonylation of glucosides is a system to metabolize xenobiotics and is common to higher plants. Moreover, some plantlets including Arabidopsis thaliana excreted some of the incorporated naphthols into the culture media as their glucosides. In order to analyze the function of malonylation in the metabolism of these xenobiotics, we identified a malonyltransferase gene (At5g39050) responsible for the malonylation of these compounds in A. thaliana. The recombinant enzyme had malonyltransferase activity toward several phenolic glucosides including naphthol glucosides. A knockout mutant of At5g39050 (pmat1) exposed to naphthols accumulated only a few malonylglucosides in the cell, and released larger amounts of simple glucosides into the culture medium. In contrast, forced expression of At5g39050 in the pmat1 mutant resulted in increased malonylglucoside accumulation and decreased glucoside excretion to the media. The results provided clear evidence of whether the release of glucosides or the storage of malonylglucosides was determined by the At5g39050 expression level. A similar event in naphthol metabolism was observed in the tobacco mutant with a suppressed malonyltransferase gene (NtMaT1). These results suggested that malonylation could be a key reaction to separate the way of xenobiotics disposition, that is, release from cell surface or storage in vacuoles.  相似文献   

3.
An enzyme preparation isolated from mungbean hypocotyls catalyses the malonyl-CoA-dependent N-malonylation of 1-aminocyclopropane-1-carboxylic acid (ACC), D-phenylalanine (Phe), D-methionine and 2-aminoisobutyric acid with Km values of 0.15, 0.8, 3.4 and 5.1 mM, respectively L-enantiomers of Phe and methionine were, however, not malonylated by the enzyme preparation. When ACC was tested on D-Phe malonyltransferase activity, or when D-Phe was tested on ACC malonyltransferase activity, these compounds exhibited competitive inhibition kinetics with Ki values similar to their respective Km values. Such a relationship suggests that malonylations of ACC and D-amino acids are catalysed by the same enzyme. This view was further supported by the observations that the ratio ACC-D-Phe malonyltransferase activities remained constant throughout various fractionation steps and both enzyme activities were inhibited similarly by various sulphydryl reagents and 1-aminocycloalkane-1-carboxylic acids.  相似文献   

4.
The structure of a flavanone glycoside from the roots of Glycyrrhiza uralensis has been confirmed as 4′-O-[β-d-apio-d-furanosyl-(1 → 2)-β-d-glucopyranosyl]liquiritigenin. In addition, two known flavonoid glucosides, ononin (a minor component) and liquiritin (a major component), were isolated from the same extract.  相似文献   

5.
Common blue butterflies (Polyommatus icarus) sequester flavonoids from their larval food and store these pigments as part of their adult wing colouration. Insects were reared on 10 different diets to assess effects of host plants on variation in flavonoid sequestration in this moderately polyphagous butterfly. Rearing experiments revealed an unexpectedly large gradient in flavonoid richness, ranging from individuals with high flavonoid loads (reared on inflorescences of Medicago sativa, Trifolium repens, T. pratense) to butterflies which contained almost no such pigments (fed with foliage of M. sativa or Robinia pseudoacacia). Flavonoid sequestration was much more effective from natural hostplants than from experimentally offered diets which would not be accepted in the field. Female butterflies on average sequestered almost 60% more flavonoids than males. This sex difference was more pronounced on natural than on experimental diets. Flavonoid load was significantly and positively related to dry mass and forewing length as two important fitness correlates of butterflies. This correlation was particularly strong on experimental diets (i.e. under constraining conditions for development). On natural hostplants, in contrast, when butterflies generally were flavonoid-rich, no clear relationship between flavonoid load and size or mass emerged. Our analytical data are consistent with field results according to which females rich in UV-absorbing flavonoid wing pigments are more attractive to mate-searching males. In P. icarus, flavonoid richness might therefore increase visibility (by more effective sensory stimulation of the visual system), but could also confer information about the feeding history, and thus ontogenetically determined ‘quality’ of a potential mate.  相似文献   

6.
Mammalian phase II metabolism of dietary plant flavonoid compounds generally involves substitution with glucuronic acid. In contrast, flavonoids mainly exist as glucose conjugates in plants, and few plant UDP-glucuronosyltransferase enzymes have been identified to date. In the model legume Medicago truncatula, the major flavonoid compounds in the aerial parts of the plant are glucuronides of the flavones apigenin and luteolin. Here we show that the M. truncatula glycosyltransferase UGT84F9 is a bi-functional glucosyl/glucuronosyl transferase in vitro, with activity against a wide range of flavonoid acceptor molecules including flavones. However, analysis of metabolite profiles in leaves and roots of M. truncatula ugt84f9 loss of function mutants revealed that the enzyme is essential for formation of flavonoid glucuronides, but not most flavonoid glucosides, in planta. We discuss the use of plant UGATs for the semi-synthesis of flavonoid phase II metabolites for clinical studies.

UGT84F9 is a bifunctional glucuronosyltransferase/glucosyltransferase that is necessary for the glucuronidation of a wide range of flavonoid natural products in Medicago truncatula.  相似文献   

7.
Fungal infection of grasses, including rice (Oryza sativa), sorghum (Sorghum bicolor), and barley (Hordeum vulgare), induces the formation and accumulation of flavonoid phytoalexins. In maize (Zea mays), however, investigators have emphasized benzoxazinoid and terpenoid phytoalexins, and comparatively little is known about flavonoid induction in response to pathogens. Here, we examined fungus-elicited flavonoid metabolism in maize and identified key biosynthetic enzymes involved in the formation of O-methylflavonoids. The predominant end products were identified as two tautomers of a 2-hydroxynaringenin-derived compound termed xilonenin, which significantly inhibited the growth of two maize pathogens, Fusarium graminearum and Fusarium verticillioides. Among the biosynthetic enzymes identified were two O-methyltransferases (OMTs), flavonoid OMT 2 (FOMT2), and FOMT4, which demonstrated distinct regiospecificity on a broad spectrum of flavonoid classes. In addition, a cytochrome P450 monooxygenase (CYP) in the CYP93G subfamily was found to serve as a flavanone 2-hydroxylase providing the substrate for FOMT2-catalyzed formation of xilonenin. In summary, maize produces a diverse blend of O-methylflavonoids with antifungal activity upon attack by a broad range of fungi.

Upon fungal infection, maize produces a complex mixture of O-methylated flavonoids, which are biosynthesized by regiospecific O-methyltransferases and that contribute to the blend of defense-related specialized metabolites.  相似文献   

8.
《Plant science》1986,44(3):175-181
Chrysosplenium americanum Schwein. ex Hooker (Saxifragaceae) accumulates a variety of partially methylated flavonol glucosides. Specific antibodies to tri- and tetramethylated flavonol-2′-O-glucosides, located using fluorescein isothiocyanate (FITC) goat antirabbit antibody, were used for the localization of the flavonol glucosides in leaf epidermis, cross sections and protoplasts. The results indicated that flavonoid accumulation occurred mainly in the walls of epidermal cells and, to a much lesser extent, in mesophyll cell walls. The weak fluorescence observed in the vacuoles of protoplasts suggested a minor role of this compartment in the accumulation process. The significance of flavonoid deposition within epidermal cell walls is discussed in relation to the lipophilic nature of these compounds and their possible role in the physiology of the plant.  相似文献   

9.
Chrysosplenium tetrandrum, from northern British Columbia, accumulates a variety of flavonoid glycosides. Several kaempferol and quercetin mono- and diglycosides were identified. The major flavonoid fraction consisted of O-methylated compounds having an hydroxyl or methoxyl substituent at position-6. Aglycones identified were 5,4′-dihydroxy-3,6,7-trimethoxyflavone, 5,6,7,3′,4′-pentahydroxy-3-methoxyflavone, 5,6,3′,4′-tetrahydroxy-3,7-dimethoxyflavone, 5,6,4′-trihydroxy-3,7,3′-trimethoxyflavone, 5,3′,4′-trihydroxy-3,6,7-trimethoxyflavone, and 5,4′-dihydroxy-3,6,7,3′-tetramethoxyflavone. All occurred as glucosides. The occurrence of 6-substitution and the preponderance of O-methylated flavonoids supports removal of Chrysosplenium from Engler's Saxifraginae.  相似文献   

10.

Aims

Dietary flavonoid intake shows a significant inverse association with mortality from coronary heart disease, incidence of myocardial infarction and stroke. Quercetin is one of the most common flavonoids in our diet and has several favorable biological activities. Quercetin glucosides, which are enzymatically trans-glycosylated isoquercitrin, have high water-solubility and bioavailability compared with quercetin. Here, we investigated the effects of quercetin glucosides on collateral development in a murine hindlimb ischemia model.

Main methods

We induced hindlimb ischemia in 24- to 32-week-old male C3H/HeJ mice by resecting the right femoral artery. Then, 0.5% carboxymethyl cellulose (control) or quercetin glucosides (100 mg/kg/day) were administered daily by gavage. Blood flow was monitored weekly by laser Doppler imaging.

Key findings

Recovery of blood flow to the ischemic leg was significantly enhanced by quercetin glucosides (blood flow ratio at 4 weeks: control, 0.57 ± 0.11; quercetin glucosides, 0.95 ± 0.10, p < 0.05). Furthermore, anti-CD31 immunostaining revealed that quercetin glucosides increased capillary density in the ischemic muscle (control, 200 ± 24/mm2; quercetin glucosides, 364 ± 41/mm2, p < 0.01). Quercetin glucosides did not promote tumor growth. The beneficial effect of quercetin glucosides was abrogated in eNOS-deficient mice.

Significance

These results suggest that quercetin glucosides may have therapeutic potential to promote angiogenesis in ischemic tissue.  相似文献   

11.
Phytochemical investigation of the aerial parts of Potentilla astracanica Jacq. led to the isolation of two isoflavonoid glucosides (1, 2) five flavonoid glycosides (37) including one flavone-C-glycoside (7) as well as two flavans (8, 9). The occurrence of isoflavonoids and C-glycosyl flavone is being reported for the first time from the genus Potentilla.  相似文献   

12.
The flavonoid fraction from the butanol extract of a Mediterranean sample of the seagrass Halophila stipulacea was chemically analyzed. A new malonylated flavone glucoside, genkwanin-4′-O-(6“-malonyl-glucopyranoside) (3), was isolated together with known flavone glucosides 4-9, previously reported only from terrestrial sources. The structure of 3 was established by means of spectroscopic techniques, mainly NMR methods.  相似文献   

13.
Alfalfa (Medicago sativa; =M. sativa ssp. sativa) in Lithuania is sown as albuminous forage for cattle due to favourable climatic condition. Over many generations, alfalfa plants have escaped from cultivation fields into natural ecosystems and established wild populations. We collected and analyzed individuals from seventeen wild populations of M. sativa. Using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analyses, 117 RAPD and 64 ISSR reproducible and highly polymorphic (90.8% for RAPD and 86.3% for ISSR) loci were established. AMOVA showed a high genetic differentiation of M. sativa populations for both types of DNA markers utilized. According to RAPD markers, the genetic variability among populations was 63.1% and 57.0% when ISSR markers were used. Taken together, these results demonstrate that wild populations of M. sativa possess a high potential of genetic variability, that could potentially result in colonization of natural ecosystems. The UPGMA cluster analysis also showed that the DNA markers discovered in this study can distinguish between M. sativa and M. falcata (=M. sativa ssp. falcata) populations and therefore may be used to study the genetic impact of M. sativa on the native populations of M. falcata.  相似文献   

14.
Medicinal plants are extensively utilized in traditional and herbal medicines, both in India and around the world due to the presence of diverse low molecular weight natural products such as flavonoids, alkaloids, terpenoids and sterols. Flavonoids which have health benefits for humans are the large class of phenylpropanoid-derived secondary metabolites and are mostly glycosylated by UDP-glycosyltransferases (UGTs). Although large numbers of different UGTs are known from higher plants, very few protein structures have been reported till now. In the present study, the three-dimensional model of flavonoid specific glycosyltransferases (WsFGT) from Withania somnifera was constructed based on the crystal structure of plant UGTs. The resulted model was assessed by various tools and the final refined model revealed GT-B type fold. Further, to understand the sugar donors and acceptors interactions with the active site of WsFGT, docking studies were performed. The amino acids from conserved PSPG box were interacted with sugar donor while His18, Asp110, Trp352 and Asn353 were important for catalytic function. This structural and docking information will be useful to understand the glycosylation mechanism of flavonoid glucosides.

Abbreviations

DOPE - Discrete Optimized Potential Energy, PDB - Protein Data Bank, PSPG - Plant Secondary Product Glycosyltransferase, RMSD - Root Mean Squared Deviation, UDP - Uridine diphosphate, UGT - UDP-glycosyltransferases.  相似文献   

15.
Two new chromone acyl glucosides, 5-hydroxy-7-O-(6-O-p-cis-coumaroyl-β-D-glucopyranosyl)-chromone (1) and 5-hydroxy-7-O-(6-O-p-trans-coumaroyl-β-D-glucopyranosyl)-chromone (2), and a new flavonoid glucoside, ayanin 3′-O-β-D-glucopyranoside (3) were isolated from aerial parts of Dasiphora parvifolia, together with flavonoid glycosides (410), catechins (11, 12), and hydrolysable tannins (13, 14). The chemical structures of these compounds were elucidated on the basis of spectroscopic data. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and the hyaluronidase inhibitory activity of these compounds were evaluated.  相似文献   

16.
Estimating the feed intake of grazing herbivores is critical for determining their nutrition, overall productivity and utilization of grassland resources. A 17-day indoor feeding experiment was conducted to evaluate the potential use of Medicago sativa as a natural supplement for estimating the total feed intake of sheep. A total of 16 sheep were randomly assigned to four diets (four sheep per diet) containing a known amount of M. sativa together with up to seven forages common to typical steppes. The diets were: diet 1, M. sativa + Leymus chinensis + Puccinellia distans; diet 2, species in diet 1 + Phragmites australis; diet 3, species in diet 2 + Chenopodium album + Elymus sibiricus; and diet 4, species in diet 3 + Artemisia scoparia + Artemisia tanacetifolia. After faecal marker concentrations were corrected by individual sheep recovery, treatment mean recovery or overall recovery, the proportions of M. sativa and other dietary forages were estimated from a combination of alkanes and long-chain alcohols using a least-square procedure. Total intake was the ratio of the known intake of M. sativa to its estimated dietary proportion. Each dietary component intake was obtained using total intake and the corresponding dietary proportions. The estimated values were compared with actual values to assess the estimation accuracy. The results showed that M. sativa exhibited a distinguishable marker pattern in comparison to the other dietary forage species. The accuracy of the dietary composition estimates was significantly (P < 0.001) affected by both diet diversity and the faecal recovery method. The proportion of M. sativa and total intake across all diets could be accurately estimated using the individual sheep or the treatment mean recovery methods. The largest differences between the estimated and observed total intake were 2.6 g and 19.2 g, respectively, representing only 0.4% and 2.6% of the total intake. However, they were significantly (P < 0.05) biased for most diets when using the overall recovery method. Due to the difficulty in obtaining individual sheep recovery under field conditions, treatment mean recovery is recommended. This study suggests that M. sativa, a natural roughage instead of a labelled concentrate, can be utilized as a dietary supplement to accurately estimate the total feed intake of sheep indoors and further indicates that it has potential to be used in steppe grassland of northern China, where the marker patterns of M. sativa differ markedly from commonly occurring plant species.  相似文献   

17.
Four lignans, four lignan glucosides, one flavonoid and two caffeoyl glycosides of 3,4-dihydroxyphenethyl alcohol were identified variously in leaves of Forsythia suspensa, F. viridissima and F. koreana. The leaf patterns were broadly similar to those reported earlier for the fruits, except that suspensaside and β-hydroxyacteoside were not detected.  相似文献   

18.
Cyanogenesis, the release of hydrogen cyanide from damaged plant tissues, involves the enzymatic degradation of amino acid–derived cyanogenic glucosides (α-hydroxynitrile glucosides) by specific β-glucosidases. Release of cyanide functions as a defense mechanism against generalist herbivores. We developed a high-throughput screening method and used it to identify cyanogenesis deficient (cyd) mutants in the model legume Lotus japonicus. Mutants in both biosynthesis and catabolism of cyanogenic glucosides were isolated and classified following metabolic profiling of cyanogenic glucoside content. L. japonicus produces two cyanogenic glucosides: linamarin (derived from Val) and lotaustralin (derived from Ile). Their biosynthesis may involve the same set of enzymes for both amino acid precursors. However, in one class of mutants, accumulation of lotaustralin and linamarin was uncoupled. Catabolic mutants could be placed in two complementation groups, one of which, cyd2, encoded the β-glucosidase BGD2. Despite the identification of nine independent cyd2 alleles, no mutants involving the gene encoding a closely related β-glucosidase, BGD4, were identified. This indicated that BGD4 plays no role in cyanogenesis in L. japonicus in vivo. Biochemical analysis confirmed that BGD4 cannot hydrolyze linamarin or lotaustralin and in L. japonicus is specific for breakdown of related hydroxynitrile glucosides, such as rhodiocyanoside A. By contrast, BGD2 can hydrolyze both cyanogenic glucosides and rhodiocyanosides. Our genetic analysis demonstrated specificity in the catabolic pathways for hydroxynitrile glucosides and implied specificity in their biosynthetic pathways as well. In addition, it has provided important tools for elucidating and potentially modifying cyanogenesis pathways in plants.  相似文献   

19.
Oba K  Conn EE  Canut H  Boudet AM 《Plant physiology》1981,68(6):1359-1363
The distribution of the glucosides of trans- and cis-2-hydroxy cinnamic acid and of the β-glucosidase which hydrolyzes the latter glucoside was examined in preparations of epidermal and mesophyll tissue obtained from leaves of sweet clover (Melilotus alba Desr.). The concentrations of glucosides in the two tissues were about equal when compared on the basis of fresh or dry weight. Inasmuch as the epidermal layers account for no more than 10% of the leaf volume, the mesophyll tissue contains 90% or more of the glucosides. Vacuoles isolated from mesophyll protoplasts contained all of the glucosides present initially in the protoplasts.  相似文献   

20.
Quercetin and quercetin glucosides are the major flavonols present in onion (Allium cepa L.) and are predominantly present as quercetin, quercetin-3,4′-diglucoside and quercetin-4′-glucoside. Effect of different light wavelengths on onion after harvest and storage, with fluorescent, blue, red and ultra violet light influenced the quercetin and quercetin glucosides profile. In a peeled onion, all the light treatments elevated quercetin content in bulb. Among them, particularly fluorescent light effect was more eminent which stimulates the maximum synthesis of quercetin in onion. In case of whole onion bulb, skin and pulp showed different responses to light treatment, respectively. The pulp had the highest quercetin glucosides under blue light, whereas the lowest under fluorescent light. Onion skin showed nearly opposite pattern as compared to the pulp. In particular, light treatment proved to be a better way to increase the level of quercetin content in onions which might be utilized for industrial production of bioactive compounds from onion and onion waste products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号