首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Dendrimeric copper nanoparticles (CuNPs) were prepared by the reduction of [Cu2(CH3CO2)4] with ascorbic acid at 75 °C in the presence of ranelate ions. The metallic nanoparticles exhibited a strong plasmonic band centered at 581 nm, and their average size distribution was typically in the range of 20–30 nm. By adding polyvinylpyrrolidone to the reaction mixture, the growth of the initial copper nanoparticles was hindered. Their sizes were stabilized around 1.8 nm, leading to spherical agglomerates of about 50 nm. Upon green light excitation, the agglomerates exhibited yellow-orange fluorescence emission, keeping the surface plasmon resonance band at 581 nm. This dual behavior suggested the occurrence of collective plasmonic resonance and efficient energy transfer within the agglomerated nanoparticles, in order to account for the observed fluorescence in the system.

Graphical Abstract

  相似文献   

2.

Silver (Ag) nanoparticles (NPs) and Ag nanorings (NRs) have been fabricated. Due to the inherent features of Ag NPs and Ag NRs, strong electromagnetic (EM) near-field distributions were expected, and hence surface-enhanced Raman scattering (SERS) activity was demonstrated. Size and interparticle gaps distribution of Ag NPs were estimated to be 48.14?±?10.14 nm and 14.11?±?5.24 nm respectively along with estimated coverage density of?~?4?×?1010 cm?2. On the other hand, Ag NRs were found to consist of Ag clusters and of various shapes and sizes, instead of a perfect ring structure. High-resolution FESEM revealed that the individual constituent clusters were different from each other, particularly in terms of size and shape in addition to the cases how such clusters were connected to form the edge of the NR. However, the coverage density of Ag NRs was estimated to be?~?5.6?×?106 cm?2. Based on the scenarios, it was speculated that the local EM near-field distribution would excel and thus led to enhanced SERS signals. SERS enhancement of R6G was estimated as high as 2.18?×?104 and 2.78?×?104 at 610 cm?1 (C???C ring bending mode in phenyl rings) for Ag NPs and Ag NRs respectively. FDTD analysis was carried out to elucidate the EM near-field distributions.

Graphical abstract

Ag NPs and Ag NRs from an ultrathin layer of Ag on ZnO/Glass (middle pane) confirming high EF of R6G adsorbed on Ag NRs (right pane) and Ag NPs (left pane) supported by corresponding EM near-field distributions.

  相似文献   

3.

We report a simple and fast microwave-assisted method to grow silver nanoparticle films with tunable plasmon resonance band. Microwaving time controls nucleation and growth as well as particle agglomeration, cluster formation, particle morphology, and the plasmonic properties. Films produced with times shorter than 30 s presented a single well-defined plasmon resonance band (~ 400 nm), whereas films produced with times longer than 40 s presented higher wavelength resonances modes (> 500 nm). Plasmon band position and intensity can be easily tuned by controlling microwaving time and power. SEM and AFM images suggested the growth of asymmetrical silver nanoparticles. Simulated extinction spectra considering particles as spheres, hemispheres, and spherical caps were performed. The films were employed to enhance the sensitivity of ionizing radiation detectors assessed by optically stimulated luminescence (OSL) via plasmon-enhanced luminescence. By tuning the plasmon resonance band to overlap with the OSL stimulation (530 nm), luminescence enhancements of greater than 100-fold were obtained, demonstrating the importance of tuning the plasmon resonance band to maximize the OSL intensity and detector sensitivity. This versatile method to produce silver nanoparticle films with tunable plasmonic properties is a promising platform for developing small-sized radiation detectors and advanced sensing technologies.

Graphical Abstract

  相似文献   

4.

Plasmonic nanoparticles are of great importance owing to their highly responsive ‘localized surface plasmon resonance’ (LSPR) behaviour to self-agglomeration/aggregation leading to the development of various nanosensors. Herein, we demonstrated the definite self-assembly of citrate functionalized silver nanoparticles (AgNPs) into a one-dimensional linear chain in presence of charged lead ions (Pb2+), one of the most toxic heavy metal pollutants. We have explored detail mechanism using a variety of spectroscopic tools and electron microscopy. The self-aggregation of AgNPs leads to the generation of new LSPR modes due to coupling of nearby existing modes. The conclusion of our experimental findings is duly supported by our developed numerical modelling based on the quasi-static approximation that the generated new LSPR modes are solely due to formation of chain-like aggregation of AgNPs. We have also monitored the LSPR spectra in the presence of other metal ions; however, only Pb2+ found to give such unique self-assembled geometry may due to its high interaction affinity with citrate. These findings play a key role for citrate functionalised AgNPs to be used as a low cost highly selective and sensitive lead ion sensor for potential application in industrial lead pollution monitoring. We have further varied several sensor parameters such as AgNPs size, concentration, and the allowed reaction time for it to be practically implemented as an efficient lead sensor meeting the Environmental Protection Agency recommendations.

Graphical abstract

The possible sensing mechanism of citrate-functionalized silver nanoparticles towards Pb2?+?followed by unique chain-like aggregation for potential atmospheric and industrial lead pollution monitoring.

  相似文献   

5.
Yang  Yanqiu  Zhang  Haoran  Ma  Liping  Lu  Xuemei  Wu  Shiwei  Song  Peng  Xia  Lixin 《Plasmonics (Norwell, Mass.)》2020,15(5):1525-1532

4,4’-Dithiobisbenzoic acid (DTBA) is equivalent to two 4-mercaptobenzoic acid (pMBA) molecules connected together after losing H+, and this bimolecular mechanism of DTBA efficiently promotes the ionization reaction. Under the irradiation of laser light, DTBA molecules are broken to form bimolecules similar to pMBA, and this kind of bimolecular coupling greatly increases the probability of binding with Ag NPs. Also, this molecule has the carboxylic acid group, which leads to a certain sensitivity to pH. In this article, through the comparison of DTBA and pMBA parallel experiments, it is clear that DTBA has better Raman activity, higher reaction efficiency, and more stable reaction than pMBA. The occurrence of this highly efficient ionization reaction under the monitoring of surface-enhanced Raman spectroscopy (SERS) provides a certain value for the progress of further related reactions, and it also has a wide range of applications in pH sensors and intracellular pH monitoring.

The study of efficient ionization reaction of 4,4’-dithiobisbenzoic acid with bimolecular structure

  相似文献   

6.

Herein, we presented the synthesis and application of sodium dodecylbenzenesulfonate–based silver nanoparticles (termed as SDBS-AgNPs). The SDBS reverse micelles (RMs) in ethanol was used as nanoreactor for green AgNPs synthesis. The size, structure, and shape of SDBS-AgNPs were well distinct by UV/visible (UV/Vis), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) techniques. The SDBS-AgNPs were quite stable even at high temperature (80 °C), salt concentration (up to 300 μM), and wide pH range (2 to 12). Moreover, SDBS-AgNPs were found to be highly sensitive and selective colorimetric sensor for antihypertensive drug amlodipine (AML). The interaction of AML with SDBS-AgNPs resulted as a substantial increase in the absorbance and a prominent blue shift in wavelength from 426 to 400 nm. DLS results were further confirmed that the SDBS-AgNPs break into smaller sized particles. Similarly, FTIR results also verified the SDBS-AgNPs etching–based sensing of AML molecules due to the strong attraction by amine and carbonyl functional groups on the target drug. The proposed sensor exhibited linear response in the range of 0.001–200 μM (R2 = 0.9917) with limit of detection (LOD) and quantification (LOQ) of 0.161 and 0.49 μM, respectively. The probe remained selective against AML, even in the presence of equimolar interfering species (including other drugs and metal ions). Furthermore, findings proposed that the SDBS-AgNPs might be used as effective substitute to minimize infection severity by obstructing the biofilm formation against nosocomial and urinary tract infection (UTI) causing pathogens.

Graphical abstract

  相似文献   

7.

In this study, a numerical investigation was done on the optical properties of silver nanostructures using the boundary element method (BEM) and finite element method (FEM). The BEM simulation was done using a freely available code called MNBEM in MATLAB with minor modifications. The FEM simulation was done by Comsol Multiphysics, a commercial software package. Silver nanostructures in the sphere, rod, and triangle geometries and the presence of different polarization angles were compared between these two methods. According to the obtained results, the absorption cross-sections for both BEM and FEM were consistent with their actual optical properties. For instance, both longitudinal and transverse resonance modes were observed in the case of nanorods, and all three in–plane dipole, in–plane quadrupole, and out–plane quadrupole plasmon resonances were observed successfully obtained for triangular nanostructures. Although both BEM and FEM results were similar to each other (from the number and position of the peaks in the final spectra), this similarity was decreased as the anisotropy was increased in the structure. For example, nearly 40 nm difference was observed between the BEM and FEM results in the triangular nanostructures, even though the trends and shape of the peaks were similar. It was revealed that specific points should be considered in the discretization process (especially the corner fillets) to close the gap in the obtained results from BEM and FEM. According to the obtained results, BEM significantly reduces the computational cost and time by discretizing only the boundary of the domain. A self-written software was developed to predict the optical cross-section of a plasmonic-ensemble consisting of spherical, rod-shaped, and triangular nanostructures, which can be used in different disciplines such as plasmon-enhanced solar cells, plasmon-enhanced photocatalysis, and plasmon-enhanced fluorescence.

Graphical Abstract
  相似文献   

8.
In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu2+‐doped and Eu2+,Dy3+‐co‐doped Ba2MgSi2O7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid‐state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X‐ray diffraction (XRD), transmission electron microscopy (TEM) and energy‐dispersive X‐ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba2MgSi2O7:Eu2+ showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba2MgSi2O7:Eu2+Dy3+ showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f6 5d1 to 4f7 transition of Eu2+. TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu2+ doping in Ba2MgSi2O7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy3+ ions were co‐doped in Ba2MgSi2O7:Eu2+ and maximum TL intensity was observed for 2 mol% of Dy3+. TL emission spectra of Ba1.95MgSi2O7:0.05Eu2+ and Ba1.93MgSi2O7:0.05Eu2+,0.02Dy3+ phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co‐doping. The trap depths were calculated to be 0.54 eV for Ba1.95MgSi2O7:0.05Eu2+ and 0.54 eV and 0.75 eV for Ba1.93MgSi2O7:0.05Eu2+,0.02Dy3+ phosphors. It was observed that co‐doping with small amounts of Dy3+ enhanced the thermoluminescence properties of Ba2MgSi2O7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The following parts of the abstract have been edited for consistency. '4f65d1' has been corrected to '4f6 5d1', '4f7' has been corrected to '4f7', 'Ba1.95' has been corrected to 'Ba1.95' and 'Ba1.93' has been corrected to 'Ba1.93' respectively.]  相似文献   

9.
Photoluminescence (PL) of thallium co‐doped with KCl0.5Br0.5:Eu2+ powder phosphors display emission bands at 320 and 370 nm attributable to centres involving Tl+ ions in addition to characteristic Eu2+ emission around 420 nm. Additional PL excitation and emission bandS observed around 260 and 380 nm, respectively, were observed in the double‐doped KCl0.5Br0.5:Eu2+, Tl+ powder phosphors and are attributed to complex centres involving Tl+ and Eu2+ ions. The enhancement observed in the intensity of Eu2+ emission around 420 nm with the addition of TlBr in KCl0.5Br0.5:Eu2+ powder phosphors is attributed to the energy transfer from Tl+ → Eu2+ ions. Photostimulated luminescence (PSL) studies of γ‐irradiated KCl0.5Br0.5:Eu2+, Tl+ mixed phosphors are reported and a tentative PSL mechanism in the phosphors has been suggested. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
An inorganic NaMgSO4F fluoride material was prepared by the wet chemical method and studied for its photoluminescence (PL) and resonant–non‐resonant energy transfer (RET and NORET) capabilities between Ce3+ → Tb3+, Ce3+ → Eu3+ and Ce3+ → Dy3+ rare earth ions. The Tb3+ emission for Ce3+ → Tb3+ transfers under ultraviolet (UV) wavelengths peaked at 491, 547, and 586 nm, for excitation at 308 nm due to 5D4 → 7FJ (J = 4, 5, 6) transitions. Eu emission spectra were observed at 440 nm (Eu2+), 593 nm and 616 nm (Eu3+) recorded for different concentrations of materials, whereas Dy3+ emission from Ce3+ → Dy3+ transfer under UV wavelengths peaked at 485 nm and 577 nm due to 4F9/2 → 6H15/2 and 6H13/2 transitions. The purpose of the present study is to understand the RET and NORET effects of Tb3+, Eu3+ and Dy3+ co‐doping in a NaMgSO4F:Ce3+ luminescent material, which could be used as a green‐emitting material for lamp phosphors.  相似文献   

11.
Europium (Eu3+) and bismuth (Bi3+) co‐activated LiBaBO3 powder phosphors were synthesized by a solid‐state reaction and the structure, particle morphology, optical and photoluminescent properties were investigated. X‐Ray diffraction patterns of the LiBaBO3 phosphors crystallized in a pure monoclinic phase, i.e. there were no secondary phases due to either incidental impurities or undecomposed starting materials. Scanning electron microscopy images showed that the powders were made up of fluffy needle‐like particles that were randomly aligned. The band‐gap of the LiBaBO3 host was estimated to be 3.33 eV from the UV/vis absorption data. Blue emission was observed from the LiBaBO3 host, which is ascribed to self‐activation of the host matrix. In addition, greenish‐blue (493 nm) and red (613 nm) emissions were observed from europium‐doped samples and were attributed to the emissions of Eu2+ and Eu3+, respectively. Furthermore, after codoping with Bi3+, the emission intensity of Eu3+ located at 613 nm was significantly enhanced. From the Commission Internationale de I′Eclairage (CIE) color coordinates, white emission was observed from LiBa1–xBO3:xEu3+ (x = 0.020 and 0.025) phosphor powders with color coordinates of x = 0.368, y = 0.378 and x = 0.376, y = 0.366, respectively.  相似文献   

12.
Eu2+‐doped Sr2SiO4 phosphor with Ca2+/Zn2+ substitution, (Sr1–xMx)2SiO4:Eu2+ (M = Ca, Zn), was prepared using a high‐temperature solid‐state reaction method. The structure and luminescence properties of Ca2+/Zn2+ partially substituted Sr2SiO4:Eu2+ phosphors were investigated in detail. With Ca2+ or Zn2+ added to the silicate host, the crystal phase could be transformed between the α‐form and the β‐form of the Sr2SiO4 structure. Under UV excitation at 367 nm, all samples exhibit a broad band emission from 420 to 680 nm due to the 4f65d1 → 4f7 transition of Eu2+ ions. The broad emission band consists of two peaks at 482 and 547 nm, which correspond to Eu2+ ions occupying the ten‐fold oxygen‐coordinated Sr.(I) site and the nine‐fold oxygen‐coordinated Sr.(II) site, respectively. The luminescence properties, including the intensity and lifetime of Sr2SiO4:Eu2+ phosphors, improved remarkably on Ca2+/Zn2+ addition, and promote its application in white light‐emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.

Pfaffia glomerata possesses potential pharmacological and medicinal properties, mainly owing to the secondary metabolite 20-hydroxyecdysone (20E). Increasing production of biomass and 20E is important for industrial purposes. This study aimed to evaluate the influence of irradiance on plant morphology and production of 20E in P. glomerata grown in vitro. Nodal segments of accessions 22 and 43 (Ac22 and Ac43) were inoculated in culture medium containing MS salts and vitamins. Cultures were maintained at 25 ± 2 °C under a 16-h photoperiod and subjected to irradiance treatments of 65, 130, and 200 μmol m−2 s−1 by fluorescent lamps. After 30 days, growth parameters, pigment content, stomatal density, in vitro photosynthesis, metabolites content, and morphoanatomy were assessed. Notably, Ac22 plants exhibited 10-fold higher 20E production when cultivated at 200 μmol m−2 s−1 than at 65 μmol m−2 s−1, evidencing the importance of light quantity for the accumulation of this metabolite. 20E production was twice as high in Ac22 as in Ac43 plants although both accessions responded positively to higher irradiance. Growth under 200 μmol m−2 s−1 stimulated photosynthesis and consequent biomass accumulation, but lowered carotenoids and anthocyanins. Furthermore, increasing irradiance enhanced the number of palisade and spongy parenchyma cells, enhancing the overall growth of P. glomerata.

Graphical abstract

  相似文献   

14.
Eu‐doped aluminum nitride phosphors were successfully prepared using simple direct nitridation of a metallic aluminum and Eu2O3 powder mixture in flowing ammonia. AlN formed at reaction temperatures >900°C, and Eu3+ transformed into the secondary oxide phase EuAl2O4 in the nitridation condition. Phase pure AlN was obtained by post‐heat treatment of the nitridated product at 1600°C for 3 h in a nitrogen atmosphere, with an Eu2+ doping concentration < 0.5%. The phosphors exhibited broad green emission centered at 521 nm under 363 nm excitation. The luminescence of the phosphor was significantly influenced by the post‐heat treatment temperature, which affected the dissolution of Eu2+, phase purity, crystallinity, and particle size of the AlN host.  相似文献   

15.

Soybean hull is an agroindustrial waste which has not been fully studied as a food ingredient. The aims of this work were to obtain insoluble fibers from soybean hull and to evaluate the effect of high pressure homogenization (HPH) on its physicochemical properties. Hull insoluble polysaccharides (HIPS) were obtained in a single step, as the insoluble residue after pectin removal. FTIR showed bands corresponding to cellulose and hemicellulose in HIPS, and thermogravimetric analysis showed two degradation events at 236.3 °C and 325.6 °C, corresponding to cellulose and hemicellulose, respectively. HIPS dispersions (pH 3.00) were subjected to HPH by three cycles at increasing pressures (up to 1000 bar), obtaining soybean hull nanofibers. SEM images show that HPH at 1000 bar reduced the dimensions of the fiber bundle from 30 to 90 μm in length and 9–15 μm in diameter to nanofibers of 10–30 μm in length and 100–400 nm in diameter. AFM further confirms a heterogeneous distribution of sizes in HIPS800 and HIPS1000, evidencing the presence of individual nanofibers with diameters around 50 ± 10 nm and 40 ± 10 nm, respectively, with several μm in length. Furthermore, an increase in water holding capacity from 2.1 to 61 gwater/gdry matter and viscosity from 0.39 to 34,945 Pa.s were achieved as HPH at 1000 bar treatment was applied. HPH increased the interfacial area and promoted the interconnection of fibers in a hydrated gel-like structure. This explains flow behavior, which was extensively studied in this work: three-region viscosity profile (shear-thinning, plateau or shear-thickening and shear-thinning) and a pronounced hysteresis loop. Oscillatory rheology was used to study the viscoelastic behavior of HIPS dispersions. HIPS are a source of nanofibers, easy to obtain through a single step of chemical treatment followed by the application of high pressures. It is remarkable that the use of few chemical solvents is favorable from an environmental point of view. This work also suggests a potential application of HIPS to improve physicochemical and structural properties in acidic foods.

Graphical Abstract

  相似文献   

16.
《Luminescence》2017,32(3):334-340
A series of Eu2+‐activated barium orthosilicates (BaZnSiO4) were synthesized using a high‐temperature solid‐state reaction. A photoluminescence excitation study of Eu2+ shows a broad absorption band in the range of 270–450 nm, with multiple absorption peak maxima (310, 350 and 400 nm) due to 4f–5d electronic transition. The emission spectra of all the compositions show green color emission (in the spectral region 450–550 nm with a peak maximum at 502 nm and a shoulder at ~ 490 nm) with appropriate Comission Internationale de l'Eclairage (CIE) color coordinates. The two emission peaks are due to the presence of Eu2+ in two different Ba sites in the BaZnSiO4 host lattice. The energy transfers between the Eu2+ ions in BaZnSiO4 host are elucidated from the critical concentration quenching data based on the electronic multipolar interaction. All Eu2+‐activated BaZnSiO4 phosphor materials can be efficiently excited in the ultraviolet (UV) to near UV‐region (270–420 nm), making them attractive candidate as a green phosphor for solid state lighting–white light‐emitting diodes.  相似文献   

17.
In this work, the optical and structural properties of ultrasonically prepared CaF2:Eu3+ nanoparticles have been reported. Ultrasonically prepared CaF2:Eu3+ phosphor shows orange, red emission bands at 591 nm and 612 nm, respectively, when it is excited by 394 light‐emitting diode (LED) excitation wavelengths. Further phosphor materials are well characterized by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) techniques to confirm the phase purity, metal oxygen (MO) bonding and crystallites size of the materials. Here synthesized materials show a tube‐like structure under 100 nm resolution and 0.1 mol% is the best doping value of the europium ion (Eu3+) in calcium fluoride (CaF2) that shows highest intensity when prepared with an ultrasound assisted method.  相似文献   

18.
In order to improve the luminescent performance of silicate blue phosphors, Sr(1.5‐x)‐(1.5y)Mg0.5SiO4:xEu2+,yCe3+ phosphors were synthesized using one‐step calcination of a precursor prepared by chemical co‐precipitation. The crystal structure and luminescent properties of the phosphors were analyzed using X‐ray diffraction and fluorescence spectrophotometry, respectively. Because the activated ions (Eu2+) can occupy two different types of sites (Sr1 and Sr2), the emission spectrum of Eu2+ excited at 350 nm contains two single bands (EM1 and EM2) in the wavelength range 400–550 nm, centered at 463 nm, and the emission intensity first increases and then decreases with increasing concentrations of Eu2+ ions. Co‐doping of Ce3+ ions can greatly enhance the emission intensity of Eu2+ by transferring its excitation energy to Eu2+. Because of concentration quenching, a higher substitution concentration of Ce3+ can lead to a decrease in the intensity. Meanwhile, the quantum efficiency of the phosphor is improved after doping with Ce3+, and a blue shift phenomenon is observed in the CIE chromaticity diagram. The results indicate that Sr(1.5‐x)‐(1.5y)Mg0.5SiO4:xEu2+,yCe3+ can be used as a potential new blue phosphor for white light‐emitting diodes.  相似文献   

19.
The Eu2+‐induced enhancement of defect luminescence of ZnS was studied in this work. While photoluminescence (PL) spectra exhibited 460 nm and 520 nm emissions in both ZnS and ZnS:Eu nanophosphors, different excitation characteristics were shown in their photoluminescence excitation (PLE) spectra. In ZnS nanophosphors, there was no excitation signal in the PLE spectra at the excitation wavelength λex > 337 nm (the bandgap energy 3.68 eV of ZnS); while in ZnS:Eu nanophosphors, two excitation bands appeared that were centered at 365 nm and 410 nm. Compared with ZnS nanophosphors, the 520 nm emission in the PL spectra was relatively enhanced in ZnS:Eu nanophosphors and, furthermore, in ZnS:Eu nanophosphors the 460 nm and 520 nm emissions increased more than 10 times in intensity. The reasons for these differences were analyzed. It is believed that the absorption of Eu2+ intra‐ion transition and subsequent energy transfer to sulfur vacancy, led to the relative enhancement of the 520 nm emission in ZnS:Eu nanophosphors. In addition, more importantly, Eu2+ acceptor‐bound excitons are formed in ZnS:Eu nanophosphors and their excited levels serve as the intermediate state of electronic relaxation, which decreases non‐radiative electronic relaxation and thus increases the intensity of the 460 nm and 520 nm emission dramatically. In summary, the results in this work indicate a new mechanism for the enhancement of defect luminescence of ZnS in Eu2+‐doped ZnS nanophosphors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Sr4Al2O7:Eu3+ and Sr4Al2O7:Dy3+ phosphors with alkali metal substitution were prepared using a sol–gel method. The effects of a charge compensator R on the structure and luminescence of Sr4Al2O7:Re3+,R+ (Re = Eu and Dy; R = Li, Na and K) phosphors were investigated in detail. Upon heating to 1400°C, the structure of the prepared samples was that of the standard phase of Sr4Al2O7. Under ultraviolet excitation, all Sr4Al2O7:Eu3+,R+ samples exhibited several narrow emission peaks ranging from 550 to 700 nm due to the 4f → 4f transition of Eu3+ ions. All Sr4Al2O7:Dy3+,R+ phosphors showed two emission peaks at 492 and 582 nm, due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. The luminescence intensity of Sr4Al2O7:Re3+,R+ (Re = Eu and Dy; R = Li, Na and K) phosphors improved markedly upon the addition of charge compensators, promoting their application in white light‐emitting diodes with a near‐ultraviolet chip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号