首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.

In this study, we demonstrate the design of a photonic crystal fiber (PCF)-based plasmonic sensor to measure the glucose level of urine. The sensor is designed by placing a small segment of PCF between a lead-in and a lead-out single-mode fiber. We utilize the finite element method to simulate the proposed plasmonic sensor for the measurement of glucose level in urine. To offer external sensing, the cladding layer of the PCF was coated by a thin layer of gold where the gold-coated PCF was immersed in the urine sample. As a result, the urine can easily interact with the plasmonic layer of the sensor. In the outermost laser of the PCF, we considered a perfectly matched layer as a boundary condition. The simulation results confirm excellent wavelength and amplitude sensitivities where the maximum wavelength sensitivity was 2500 nm/RIU and amplitude sensitivity was 152 RIU?1 with a sensing resolution of 4?×?10?6. For optimization of the plasmonic sensor, we varied the physical parameters of the cladding air holes and the thickness of the gold layer during the simulation. We strongly believe that the proposed plasmonic sensor will play a significant role to pave the way for achieving a simple but effective PCF-based glucose sensor.

  相似文献   

2.
A photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) probe with gold nanowires as the plasmonic material is proposed in this work. The coupling characteristics and sensing properties of the probe are numerically investigated by the finite element method. The probe is designed to detect low refractive indices between 1.27 and 1.36. The maximum spectral sensitivity and amplitude sensitivity are 6 × 103 nm/RIU and 600 RIU?1, respectively, corresponding to a resolution of 2.8 × 10?5 RIU for the overall refractive index range. Our analysis shows that the PCF-SPR probe can be used for lower refractive index detection.  相似文献   

3.

In this paper, a high-resolution refractive index sensor is proposed based on a novel metal–insulator–metal plasmonic topology. The structure is based on a Si nano-ring located inside a circular cavity. It acts as an optical notch filter with a quality factor equal to 269. The proposed filter topology is numerically simulated using the finite difference time domain method. It is shown that the proposed filter can also act as a refractive index sensor with a sensitivity of 636 nm/RIU and a fairly high figure of merit (FoM) equal to 211.3 RIU−1. It is shown that the sensor can easily detect a refractive index change of ± 0.001 for dielectrics whose refractive index is between 1 and 1.2. For the refractive index range of 1.33 to 1.52, the maximum FoM of the sensor is 191 RIU−1. The simplicity of the design and its high resolution are the two main features of the proposed sensor which make it a good candidate for biomedical applications.

  相似文献   

4.
Du  Bobo  Yang  Yuan  Zhang  Yang  Yang  Dexing 《Plasmonics (Norwell, Mass.)》2019,14(2):457-463

In this article, a surface plasmon resonance (SPR) biosensor based on D-typed optical fiber coated by Al2O3/Ag/Al2O3 film is investigated numerically. Resonance in near infrared with an optimized architecture is achieved. Refractive index sensitivity of 6558 nm/RIU (refractive index unit) and detection limit of 1.5 × 10−6 RIU, corresponding to 0.4357 nm/μM and detection limit of 23 nM in BSA (bovine serum albumin) concentration sensing, are obtained. The analysis of the performance of the sensor in gaseous sensing indicates that this proposed SPR sensor is much suitable for label-free biosensing in aqueous media.

  相似文献   

5.
We propose a highly sensitive side-polished birefringent photonic crystal fiber (PCF) sensor based on surface plasmon resonance (SPR). The polished surface of the proposed structure is coated with indium tin oxide (ITO) to excite plasmon and the analytes can be placed on the flat surface easily instead of filling the voids. The birefringent nature of the structure helps in coupling more fields to the ITO-dielectric interface. With the optimum thickness of 110 nm of ITO, the structure shows a maximum wavelength sensitivity of 17000 nm/RIU with a resolution of 5.8?×?10?6 RIU. Further this also showed an amplitude sensitivity of 74 RIU?1 along with a resolution of 1.35?×?10?5 RIU. Moreover, the effect of bending on this low loss structure is also analyzed.  相似文献   

6.
We propose a highly sensitive novel diamond ring fiber (DRF)-based surface plasmon resonance (SPR) sensor for refractive index sensing. Chemically active plasmonic material (gold) layer is coated inside the large cavity of DRF, and the analyte is infiltrated directly through the fiber instead of selective infiltration. The light guiding properties and sensing performances are numerically investigated using the finite element method (FEM). The proposed sensor shows a maximum wavelength and amplitude interrogation sensitivity of 6000 nm/RIU and 508 RIU?1, respectively, over the refractive index range of 1.33–1.39. Additionally, it also shows a sensor resolution of 1.67 × 10?5 and 1.97 × 10?5 RIU by following the wavelength and amplitude interrogation methods, respectively. The proposed diamond ring fiber has been fabricated following the standard stack-and-draw method to show the feasibility of the proposed sensor. Due to fabrication feasibility and promising results, the proposed DRF SPR sensor can be an effective tool in biochemical and biological analyte detection.  相似文献   

7.
Zeng  Youjun  Zhou  Jie  Xiao  Xiaoping  Wang  Lei  Qu  Junle  Li  Xuejin  Gao  Bruce Zhi  Shao  Yonghong 《Plasmonics (Norwell, Mass.)》2019,14(6):1497-1504

A speckle-free fast angular interrogation surface plasmon resonance imaging (SPRi) sensor based on a diode-pumped all-solid-state laser and galvanometer is reported in this work. A bidirectional scan using a galvanometer realizes the fast scanning of the incidence angle. The experimental results showed that the time needed for completing an SPR dip measurement was decreased to 0.5 s. And through cascading an immovable diffuser and two diffusers rotating in opposite directions, laser speckle was eliminated. The dynamic detection range and the sensitivity reached 4.6 × 10−2 and 1.52 × 10−6 refractive index unit (RIU), respectively, in a 2D array sensor when the angle scanning range was set as 7.5°. More importantly, the results demonstrated that the angular interrogation SPR imaging sensor scheme had the capability to perform fast and high-throughput detection of biomolecular interactions at 2D sensor arrays.

  相似文献   

8.
Wang  Famei  Sun  Zhijie  Liu  Chao  Sun  Tao  Chu  Paul K. 《Plasmonics (Norwell, Mass.)》2017,12(6):1847-1853

A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance (PCF-SPR) biosensor with a silver-graphene layer is described. The silver layer with a graphene coating not only prevents oxidation of the silver layer but also can improve the silver sensing performance due to the large surface-to-volume ratio of graphene. The dual-core PCF-SPR biosensor is numerically analyzed by the finite-element method (FEM). An average spectral sensitivity of 4350 nm/refractive index unit (RIU) in the sensing range between 1.39 and 1.42 and maximum spectral sensitivity of 10,000 nm/RIU in the sensing range between 1.43 and 1.46 are obtained, corresponding to a high resolution of 1 × 10−6 RIU as a biosensor. Our analysis shows that the optical spectra of the PCF-SPR biosensor can be optimized by varying the structural parameters of the structure, suggesting promising applications in biological and biochemical detection.

  相似文献   

9.
A recently published plasmonic biosensor based on birefringent solid-core microstructured optical fiber is applied for the detection of human blood groups. The birefringent behavior is obtained by removing five central air holes of a two-ring hexagonal lattice of holes in a gold-covered silica fiber with the blood layer surrounding the fiber. The sensing performance of two resonant modes (I based on a phase matching point and II based on a loss matching point) are analyzed. For an increase of the refractive index from 1.3768 (human blood group A) to 1.3796 (human blood group O), the resonance spectral width δλ 0.5 is decreased from 26.8 to 25.8 nm for the core mode I and δλ 0.5 is increased from 28.3 to 33.2 nm for the core mode II. In addition, the amplitude sensitivity S A is increased from 329.7 to 372.2 RIU?1 for the core mode I and S A is decreased from 298.2 to 283.7 RIU?1 for the core mode II. The average value (26.20 nm for core mode I and 31.07 nm for core mode II) of δλ 0.5 from the human blood groups A, B, and O for our plasmonic biosensor is smaller in comparison with a recently published average value (39.10 nm) of the full width at half maximum (FWHM). Our biosensor can be calibrated for a glycerol-water solution by using the linear dependence between the refractive index n a and the mass fraction w of the solutes.  相似文献   

10.
We present a photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor, whose operating wavelength range is tunable. Gold nanoshells, consisting of silica cores coated with thin gold shells, are designed to be the functional material of the sensor because of their attractive optical properties. It is demonstrated that the resonant wavelength of the sensor can be precisely tuned in a broad range, 660 nm to 3.1 μm, across the visible and near-infrared regions of the spectrum by varying the diameter of the core and the thickness of the shell. Furthermore, the effects of structural parameters of the sensor on the sensing properties are systematically analyzed and discussed based on the numerical simulations. It is observed that a high spectral sensitivity of 4111.4 nm/RIU with the resolution of 2.45 × 10?5 RIU can be achieved in the sensing range of 1.33–1.38. These features make the sensor of great importance for a wide range of applications, especially in biosensing.  相似文献   

11.
Wang  Jianshuai  Pei  Li  Wu  Liangying  Wang  Ji  Ruan  Zuliang  Zheng  Jingjing 《Plasmonics (Norwell, Mass.)》2020,15(2):327-333

A surface plasmon resonance (SPR) sensor based on a photonic crystal fiber (PCF) is proposed for low refractive index (RI) detection. The core of PCF is formed by two-layer air walls and either layer is composed of six identical sector rings with negative curvature. Plasmonic material gold (Au) is coated on the external cladding surface. Finite element method (FEM) is applied to investigate the performance of the SPR sensor. Results show that the sensor is independent of polarization due to the coincident coupling properties of the two polarized modes. Additionally, in low RI ranging from 1.20 to 1.33, the sensor keeps a high spectral sensitivity with an average value of 7738 nm/RIU. When RI varies from 1.32 to 1.33, the resolution reaches to its maximum of 8.3 × 10−6. The proposed sensor shows much significance in low RI detection, which is promising in real-time measurement for medical, water pollution, and humidity.

  相似文献   

12.

A recently published plasmonic biosensor based on birefringent solid-core microstructured optical fiber is applied for detection of five types of human-liver tissues (normal N, metastatic MET, non-cancerous metastatic (NMET), hepatocellular carcinoma (HCC), and non-cancerous hepatocellular carcinoma (NHCC)). The birefringent behavior is obtained by removing five central air holes of a two-ring hexagonal lattice of holes in a gold covered silica fiber with the liver layer surrounding the fiber. The loss spectra show two resonant peaks corresponding to the phase matching points. To distinguish between normal and malignant liver tissues, we compare the relevant parameter for the type I and II core modes. Thus, for a decrease of the real part of the refractive index from 1.373431 (human-liver N) to 1.354602 (human-liver MET), the resonance spectral width δλ 0.5 is increased from 44.3 to 54.2 nm for the core mode II. In addition, the amplitude sensitivity S A is decreased from 158.6 to 88.4 RIU−1 for the same core mode. The advantages of another recently proposed plasmonic sensor based on a Bragg fiber are the larger values of the transmission loss, maximum value of the amplitude sensitivity, figure of merit, power fraction in a normal liver layer, and power fraction in the gold layer as compared with that for a microstructured fiber when applied for detection of a normal liver tissue. Another advantage of the Bragg fiber is related to the smaller value of the difference between maximal amplitude sensitivity and resonant wavelengths.

  相似文献   

13.

Platinum diselenide (PtSe2), an emerging two-dimensional transition metal dichalcogenide, exhibits thickness-dependent refractive index, and hence, intriguing optical properties. Here, we employ it as a plasmonic sensing substrate to achieve significant enhancement in Goos-Hänchen shift sensitivity. Through systematic optimization of all parameters, four optimum sensing configurations have been achieved at different wavelengths ranging from visible to near-infrared region, where the Goos-Hänchen shift sensitivity receives four times enhancement in comparison with the conventional bare gold sensing substrate. There is a linear range of Goos-Hänchen shift with the tiny change of refractive index for each optimal configuration. The detection limit of the refractive index change can be as low as 5 × 10−7 RIU which is estimated to be lower by 2 orders of magnitude, and the corresponding sensitivity of biomolecules has a 1000-fold increment compared with that of bare gold-based sensors.

  相似文献   

14.

In this paper, the simultaneous switching and sensing capabilities of a compact plasmonic structure based on a conventional rectangular hole in a silver film are proposed and investigated. The proposed structure has ultrahigh sensitivity up to 3000 nm/RIU and high figure of merit of 170 RIU−1. Also, the simulation results show the potential of the presented refractive index sensor to detect malaria infection, cancer cells, bacillus bacteria, and solution of glucose in water. Simultaneously, by changing the incident lightwave polarization, the structure behaves like a plasmonic switch, which has high extinction ratios of 15.81, 31.20, and 25.03 dB at three telecommunication wavelengths of 850, 1310, and 1550 nm, respectively. The ultrafast response time of 20 fs is achieved for the wideband application of the switching capability at the wavelength range of 1056 to 1765 nm. Moreover, the equivalent circuit model and transmission (ABCD) matrix methods are derived to validate the simulated results. Simple design, good agreement between the numerical and analytical results, biomedical applications, ultrahigh sensitivity, and ultrafast performance of the proposed structure help this idea to open up paths for design and implementation of other multi-application plasmonic devices in near-infrared region. To the best of our knowledge, the mentioned analytical methods have not been studied former at near-infrared wavelengths. Therefore, the achievements could pave the way for verifying the simulation results of plasmonic nanostructures in future investigations.

  相似文献   

15.

Surface-enhanced Raman scattering (SERS) enhancement factor (EF) is among the major applications of surface plasmon polaritons (SPP’s). In this work, the SERS EF of 1D rectangular and sinusoidal-shaped gold (Au) grating structures has been designed and optimized on Au film using COMSOL multiphysics (5.3a) RF module taking glass as substrate. The 1D grating models are simulated by variation in slit width ranging 200–600 nm while other parameters including periodicity of 700 nm and Au film thickness of 50 nm remained fixed. In order to study the several phenomena including enhanced optical transmission and SERS EF, the transmission and electric field spectra have been obtained from both types of grating structures. In agreement with fundamental plasmonic mode, the slit width of two-thirds of the periodicity found to be optimum for SERS EF. Remarkable value of SERS EF is obtained in the case of a sinusoidal Au grating device (6.4 × 109) which is calculated to be five times that of the rectangular grating (1.2 × 109). These devices are also the fingerprints of molecules, hence find applications in biosensing, pollution control, and chemical and food industry.

  相似文献   

16.
Emaminejad  Hamed  Mir  Ali  Farmani  Ali 《Plasmonics (Norwell, Mass.)》2021,16(5):1537-1548

In this essay, a tunable metamaterial-based biosensor is proposed for simultaneous monitoring of blood components including cells, plasma, water, thrombus, and urine components as well as glucose, albumin, and urea. The proposed biosensor is based on optical sensors, and it provides real-time, label-free, and direct detection, small size, and cost-effectiveness that can be an alternative tool to other conventional methods. The influence of operating frequency, sample thickness, temperature, and radiation angle on the performance of the sensor is investigated by the finite element method (FEM). Numerical results show that the maximum sensitivity and figure of merit (FoM) in the high frequency are 500 (nm/RIU) and 2000, and for low frequency are 136 (µm/RIU) and 155, respectively. The footprint of the structure is 0.34 µm2, which is remarkably smaller than the other reported biosensing structures. The proposed biosensor has the potential to provide high sensitivity, high FoM, and a wide operating range for biomedical applications.

  相似文献   

17.
Pang  Kai  Dong  Wei  Zhang  Bing  Zhan  Shuyue  Wang  Xiaoping 《Plasmonics (Norwell, Mass.)》2016,11(4):1119-1128

We demonstrate that a designed bimetallic chip is capable of improving the performance of a surface plasmon resonance (SPR) sensor based on angular interrogation. Through a numerical simulation and a refractometry experiment, we prove that this bimetallic chip can effectively reduce the noise level by about a factor of 2 compared to the traditional SPR sensors that only use a single gold film. The bimetallic chip presents a lower refractive index resolution of 5.3 × 10−7 refractive index units. In addition, the enhancement of the electric field intensity at the surface of the configuration by a factor of 2 makes it possible to have a high sensitivity in a larger region, which promotes the biosensing applications of the chip. Through a simple and novel method for the detection of cadmium ions (Cd2+) based on the bimetallic configuration, a detection level for Cd2+ (0.01 μM or 1.12 ppb) can be realized, which compares favorably with similar studies.

  相似文献   

18.

The present work reports the As, Cr, Cu, Pb, Zn, and Fe concentrations of drinking water samples in Neyshabur Plain, Iran. This study aimed also to ascertain the potential consumers’ health risk of heavy metal intake. Heavy metal concentrations were analyzed by inductively coupled plasma optical emission spectrometry. The highest and lowest average values in the analyzed water samples were observed for Fe (9.78 ± 5.61 μg/L) and As (1.30 ± 2.99 μg/L), respectively. These values were well below the limits recommended by the World Health Organization and the Iranian national standard. Heavy metal pollution index and heavy metal evaluation index were used to evaluate drinking water quality. The risk index was calculated by chronic daily intake and hazard quotient according to the United States Environmental Protection Agency approach. Heavy metal pollution index in all the samples was less than 100, indicating that it is a low-level heavy metal. The total risk of all heavy metals in the urban environment varied from 40.164 × 10−7 to 174.8 × 10−7. In this research, the maximum average of risk belonged to lead and copper with the respective values of 60.10 × 10−7and 33.99 × 10−7 from the selected wells. However, considering the toxic effect of some elements, including Pb and As, in the chronic exposure of consumers, we suggest a continuous evaluation and monitoring of drinking water resources.

  相似文献   

19.
Fano resonances are numerically predicted in an ultracompact plasmonic structure, comprising a metal-isolator-metal (MIM) waveguide side-coupled with two identical stub resonators. This phenomenon can be well explained by the analytic model and the relative phase analysis based on the scattering matrix theory. In sensing applications, the sensitivity of the proposed structure is about 1.1?×?103 nm/RIU and its figure of merit is as high as 2?×?105 at λ?=?980 nm, which is due to the sharp asymmetric Fano line-shape with an ultra-low transmittance at this wavelength. This plasmonic structure with such high figure of merits and footprints of only about 0.2 μm2 may find important applications in the on-chip nano-sensors.  相似文献   

20.

This paper deals with the development and analysis of D-Shaped photonic crystal fiber (PCF) biosensors using surface plasmon resonance (SPR). A thin metal layer is deposited on the outer flat surface of the PCF that behaves as the plasmonic material. Analyte is filled in the outermost peripheral region of metal layer. Finite element method (FEM) with perfectly matched layer (PML) is applied to analyze the proposed sensors. Mode analysis is performed on the proposed structures to evaluate various parameters of SPR-based PCF sensors. Three D-shaped PCF structures have been proposed with silver (Ag), gold (Au) and two-half layers of both (Ag-Au) on its flat surface. The first two structures are analyzed to the range of wavelength where the SPR will occur to facilitate understanding of the third structure. It is observed that the structures with one metal have only one sensitive plasmonic peak whereas the structure with two metal layers has two sensitive plasmonic peaks, making it suitable candidate for two-molecule sensing present in a sample analyte. Good sensitivities and resolutions are achieved for both plasmonic peaks.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号