首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Du  Bobo  Yang  Yuan  Zhang  Yang  Yang  Dexing 《Plasmonics (Norwell, Mass.)》2019,14(2):457-463

In this article, a surface plasmon resonance (SPR) biosensor based on D-typed optical fiber coated by Al2O3/Ag/Al2O3 film is investigated numerically. Resonance in near infrared with an optimized architecture is achieved. Refractive index sensitivity of 6558 nm/RIU (refractive index unit) and detection limit of 1.5 × 10−6 RIU, corresponding to 0.4357 nm/μM and detection limit of 23 nM in BSA (bovine serum albumin) concentration sensing, are obtained. The analysis of the performance of the sensor in gaseous sensing indicates that this proposed SPR sensor is much suitable for label-free biosensing in aqueous media.

  相似文献   

2.
Wang  Famei  Sun  Zhijie  Liu  Chao  Sun  Tao  Chu  Paul K. 《Plasmonics (Norwell, Mass.)》2017,12(6):1847-1853

A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance (PCF-SPR) biosensor with a silver-graphene layer is described. The silver layer with a graphene coating not only prevents oxidation of the silver layer but also can improve the silver sensing performance due to the large surface-to-volume ratio of graphene. The dual-core PCF-SPR biosensor is numerically analyzed by the finite-element method (FEM). An average spectral sensitivity of 4350 nm/refractive index unit (RIU) in the sensing range between 1.39 and 1.42 and maximum spectral sensitivity of 10,000 nm/RIU in the sensing range between 1.43 and 1.46 are obtained, corresponding to a high resolution of 1 × 10−6 RIU as a biosensor. Our analysis shows that the optical spectra of the PCF-SPR biosensor can be optimized by varying the structural parameters of the structure, suggesting promising applications in biological and biochemical detection.

  相似文献   

3.

The steering of guided light in surface plasmon resonance (SPR) sensing platforms introduced more than eight decades ago from the first proposed optical sensor in 1983. However, sensing the environmental variation considering transverse modes is still require the attention from the scientist. Here, for the first time, by considering steering of guided light a high-performance SPR sensor base on Otto structure is proposed. By incorporating the graphene and white graphene in to a prism-waveguide configuration, we calculated the excitation of both TE(TM) modes as refractive index is changed from 1 to 1.04. to analysis of the structure finite-difference time-domain (FDTD) is applied. To benchmark of the structure performance parameters including sensitivity, figure of merit, polarization extinction ratio (PER), and insertion loss (IL) are calculated. Numerical results show that maximum sensitivity and figure of merit are obtained for TM modes of 1226 and 27 respectively. In such a case, graphene monolayer is applied. By considering coupling condition, at the μc?=?0.4 eV, the maximum value of PER is 75 dB, and IL is 0.022 dB. Moreover, it is obtained that in all these conditions PER is higher than 8 dB, and IL is less than 0.04 dB.

  相似文献   

4.
Gu  Sanfeng  Sun  Wei  Li  Meng  Zhang  Tianheng  Deng  Ming 《Plasmonics (Norwell, Mass.)》2022,17(3):1129-1137

A dual-core and dual D-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor with silver and aluminum nitride (AlN) films is designed. The distribution characteristics of the electromagnetic fields of core and plasmon modes, as well as the sensing properties, are numerically studied by finite element method (FEM). The structure parameters of the designed sensor are optimized by the optical loss spectrum. The results show the resonance wavelength variation of 489 nm for the refractive index (RI) range of 1.36?~?1.42. In addition, a maximum wavelength sensitivity of 13,400 nm/RIU with the corresponding RI resolution of 7.46?×?10?6 RIU is obtained in the RI range of 1.41?~?1.42. The proposed sensor with the merits of high sensitivity, low cost, and simple structure has a wide application in the fields of RI sensing, such as hazardous gas detection, environmental monitoring, and biochemical analysis.

  相似文献   

5.

A novel design of elliptic cylindrical nanowire hybrid plasmonic waveguide (ECNHPW)–based polarization beam splitter (PBS) is proposed. In the proposed design, the ECNHPW arm acts as an input port and a bar port; on the other hand, a regular silicon wire (RSW) arm acts as a cross port. By selecting the physical parameters of the proposed PBS accurately, the transverse electric (TE) mode is merely satisfied with the phase-matching condition. In contrast, the transverse magnetic (TM) mode does not propagate to the RSW arm. Consequently, the TM input mode goes directly to the ECNHPW arm, while the TE input mode in ECNHPW is coupled with RSW arm. As a result, the two different polarization modes are meritoriously separated, and they pass through two different arms. For the proposed PBS, the insertion loss (IL) of both polarizations lies below 1 dB. For TE input, the value of the polarization extinction ratio (PER) is 27.2 dB, and for TM input, it is 23.9 dB at 1550 nm operating wavelength. Further optimization is implemented by varying the wavelength, thickness of SiO2, and the gap between the waveguides using the finite element method (FEM). The proposed PBS is designed with 150 nm bandwidth, high PER, and low IL, which can be suitable for photonic integrated circuits (PICs).

  相似文献   

6.
Cheng  Dong  Yu  Panlong  Zhu  Lizhi  Yu  Xinyu  Tang  Xiangdong  Zhan  Shiping  Gao  Yongyi  Nie  Guozheng 《Plasmonics (Norwell, Mass.)》2020,15(5):1389-1394

In this paper, we theoretically and numerically reported a dual plasmon-induced transparency and the relevant sensing property in a multi-cross metasurface by the coupled mode analysis. A phase coupling model was established to characterize the optical response of this plasmonic sensor. It was found that the transparency windows were sensitive to the resonance mode of each metal strip, which was well demonstrated by the theoretical model. Both the sensing property and the slow light in this structure were discussed. A high figure of merit of 223 and sensitivity of 850 nm/RIU were achieved. In addition, the 1170-nm near-infrared light can be slowed down by nearly two order of magnitude with group delay of 0.45 ps in this sensor. These results may provide guidance for light-matter interaction-enhanced slow-light sensor and integrated optical circuit design.

  相似文献   

7.

Dividing a metal nanoparticle into smaller components and the occurrence of the plasmonic phenomenon in the gap between these components can improve the sensitivity of the detector to variation of the refraction coefficient of liquid. In this paper, in a constant volume of metal, a golden disk is divided into two rings and one smaller disk. With a proper arrangement of these components, the surface plasmon resonance phenomenon takes place at the wavelength of 945.7 nm. The occurrence of this phenomenon increases the field in the distance between nanoparticles surrounded by liquid. The sensitivity of the detector that designed using nanodisks is 300 nm/RIU while it increases to 500 nm/RIU for the new structure. The increase of LSPR displacement, for a variation of 0.01 in the liquid refraction coefficient, from 3 nm for a disk to 5 nm for a proposed structure verifies a 67% improvement in the sensitivity of the sensor.

  相似文献   

8.

In this report, a novel D-shaped long-range surface plasmon resonance (LRSPR) fiber base sensor has been introduced. The demonstration of proposed sensor involves two D-shaped silver-coated models to study the sensitivity responses. The entire study with the constructed models is based on a single-mode fiber. The models are multilayered consisting of metal, dielectric, and analyte as separate layers. Silver (Ag) and magnesium fluoride (MgF2) strips are used as metal and dielectric layers respectively. The constituency of analyte as an interface excellently standardized the models for sensitivity detection. In this report, a large range of analyte refractive indices (RI) which varies from 1.33 to 1.38 is appraised for the proposed models to characterize the sensitivity. The entire context is encompassed by the wavelength region from 450 to 850 nm with an interval of 20 nm. Sensitivities in this report are measured based on the analyte position from the core and metal for both models. For each of the two models, the analyte is placed as the top layer. RIs of the applied metal (Ag) are measured using the Drude-Lorentz formula. The simulated sensitivities for model-1 and model-2 vary from 6.3?×?103 nm/RIU to 8.7?×?103 nm/RIU.

  相似文献   

9.

In this paper, a plasmonic perfect absorber (PPA) based on metal-insulator-metal-insulator-metal (MIMIM) structure has been designed for refractive index sensing of glucose solutions (analyte) and then a new method has been proposed for fast, low-cost, and easy measurement of sensor’s sensitivity. Simulation results show that the absorption spectrum of the proposed sensor has two resonance peaks that with an increase in analyte refractive index, both of them are red-shifted. In our proposed measurement technique, two conventional single-wavelength lasers (with wavelengths of 1050 nm and 1750 nm) are used for vertical plane wave light illumination on the structure. Then, the absorbed powers at 1750 nm (A2) and 1050 nm (A1) wavelengths are calculated and variation of the absorption ratio (A2/A1) due to change of analyte refractive index would be introduced as the sensitivity of sensor (S = Δ(A2/A1)/Δn). Obtained results show that the increase of analyte refractive index from n = 1.312 to n = 1.384 will result in an increase of sensor’s sensitivity from 9.3/RIU to 33.475/RIU.

  相似文献   

10.
Chen  Hao  Xiong  Lei  Hu  Fangrong  Xiang  Yuanjiang  Dai  Xiaoyu  Li  Guangyuan 《Plasmonics (Norwell, Mass.)》2021,16(4):1071-1077

We propose an ultrasensitive and tunable mid-infrared sensor based on plasmon-induced transparency (PIT) in a monolayer black phosphorus metasurface. Results show that there are two PIT windows, each of which occurs when the long axis of the metasurface is placed along the MBP’s armchair and zigzag crystal directions, respectively. The corresponding sensors based on these PIT effects show high sensitivities of 7.62 THz/RIU and 7.36 THz/RIU. Both PIT frequencies can be tuned statically by varying the geometric parameters or dynamically by changing the electron doping of monolayer black phosphorus, making the sensors adaptable to tackle with a variety of scenarios. We expect that this work will advance the engineering of metasurfaces based on monolayer black phosphorus and promote their sensing applications.

  相似文献   

11.
Jiao  Shengxi  Li  Yu  Ma  Keyi 《Plasmonics (Norwell, Mass.)》2021,16(4):1099-1106

Three layers of periodic artificial metamaterial sensing structure (including the upper metal particles, intermediate dielectric layer, and the lower reflective layer) with ultra-narrow band absorption were designed. The resonance characteristics and sensing properties were analyzed by the finite difference time domain (FDTD) method. The effect of localized surface plasmon resonance (LSPR) was obviously observed at the resonance wavelength of 911 nm, and it achieves nearly perfect absorption of exceeding 98% with a full width at half maximum (FWHM) of 3.5 nm. In addition, a wavelength sensitivity of 542 nm/RIU with a figure of merit (FOM) of 155 was obtained in the refractive index (RI) range from 1.00 to 1.35, which has a wide range of applications. The results show that the proposed structure has high absorption and RI sensitivity, which is suitable for bioengineering and medical detection.

  相似文献   

12.

In this paper, the simultaneous switching and sensing capabilities of a compact plasmonic structure based on a conventional rectangular hole in a silver film are proposed and investigated. The proposed structure has ultrahigh sensitivity up to 3000 nm/RIU and high figure of merit of 170 RIU−1. Also, the simulation results show the potential of the presented refractive index sensor to detect malaria infection, cancer cells, bacillus bacteria, and solution of glucose in water. Simultaneously, by changing the incident lightwave polarization, the structure behaves like a plasmonic switch, which has high extinction ratios of 15.81, 31.20, and 25.03 dB at three telecommunication wavelengths of 850, 1310, and 1550 nm, respectively. The ultrafast response time of 20 fs is achieved for the wideband application of the switching capability at the wavelength range of 1056 to 1765 nm. Moreover, the equivalent circuit model and transmission (ABCD) matrix methods are derived to validate the simulated results. Simple design, good agreement between the numerical and analytical results, biomedical applications, ultrahigh sensitivity, and ultrafast performance of the proposed structure help this idea to open up paths for design and implementation of other multi-application plasmonic devices in near-infrared region. To the best of our knowledge, the mentioned analytical methods have not been studied former at near-infrared wavelengths. Therefore, the achievements could pave the way for verifying the simulation results of plasmonic nanostructures in future investigations.

  相似文献   

13.

Highly sensitive surface plasmon resonance (SPR) sensor consisting of Ag-Pt bimetallic films sandwiched with 2D materials black phosphorus (BP) and graphene over Pt layer in Kretschmann configuration is analyzed theoretically using the transfer matrix method. Numerical results show that upon suitable optimization of thickness of Ag-Pt layers and the number of layers of BP and graphene, sensitivity as high as 412°/RIU (degree/refractive index unit) can be achieved for p-polarized light of wavelength 633 nm. This performance can be tuned and controlled by changing the number of layers of BP and graphene. Furthermore, the addition of graphene and heterostructures of black phosphorus not only improved the sensitivity of the sensor but also kept the FWHM of the resonance curve much smaller than the conventional sensor utilizing Au as plasmonic metal and hence improved the resolution to a significant extent. We expect that this new proposed design will be useful for medical diagnosis, biomolecular detection, and chemical examination.

  相似文献   

14.

In this study, we demonstrate the design of a photonic crystal fiber (PCF)-based plasmonic sensor to measure the glucose level of urine. The sensor is designed by placing a small segment of PCF between a lead-in and a lead-out single-mode fiber. We utilize the finite element method to simulate the proposed plasmonic sensor for the measurement of glucose level in urine. To offer external sensing, the cladding layer of the PCF was coated by a thin layer of gold where the gold-coated PCF was immersed in the urine sample. As a result, the urine can easily interact with the plasmonic layer of the sensor. In the outermost laser of the PCF, we considered a perfectly matched layer as a boundary condition. The simulation results confirm excellent wavelength and amplitude sensitivities where the maximum wavelength sensitivity was 2500 nm/RIU and amplitude sensitivity was 152 RIU?1 with a sensing resolution of 4?×?10?6. For optimization of the plasmonic sensor, we varied the physical parameters of the cladding air holes and the thickness of the gold layer during the simulation. We strongly believe that the proposed plasmonic sensor will play a significant role to pave the way for achieving a simple but effective PCF-based glucose sensor.

  相似文献   

15.
Zhang  RuXin  Du  ChaoLing  Sun  Lu  Rong  WangXu  Li  Xiang  Lei  MingXin  Shi  DaNing 《Plasmonics (Norwell, Mass.)》2022,17(3):965-971

In this paper, individual split Au square nanorings were numerically proposed as novel substrates for surface-enhanced Raman and hyper-Raman scattering (SERS and SEHRS) simultaneously. The peak wavelengths of their localized surface plasmon resonance (LSPR) fall in the near-infrared and visible light regions, respectively, which are able to be finely tuned to match well with the wavelengths of the incident laser and hyper-Raman scattered light beams. Their SEHRS and SERS performances along with electromagnetic (EM) field distributions are numerically investigated by finite element method. With the enhancement of near electric-fields generated by LSPRs, the maximum SEHRS and SERS enhancement factors are demonstrated to reach 1.22?×?1012 and 108, respectively. Meanwhile, the corresponding SERS-based refractive index (RI) sensitivity factor reaches as high as 258 nm/RIU and 893 nm/RIU, at visible and near-infrared wavelengths, respectively. The proposed structure holds great promise both for developing SEHRS- and SERS-based RI sensing substrates, which shows strong potential applications in nanosensing and enhanced Raman scattering.

  相似文献   

16.

Light control capability of photonic crystal fiber (PCF) is a unique feature which can be applied to improve biosensing and plasmonic performance. Here, we reported alphabetic-core microstructure fiber-based plasmonic biosensor. Three different alphabetic R-, M-, and S-shaped cores of PCF-based plasmonic microstructures show controllable light propagation to enhance biosensor sensitivity and resolution. The light-guiding properties and sensing performance are investigated numerically using the finite element method (FEM). The proposed R-shaped core (RSC), M-shaped core (MSC), and S-shaped core (SSC) PCF-based plasmonic sensors show the maximum wavelength and amplitude sensitivities of 12,000, 11,000, 10,000 nm/RIU and 478, 533, and 933 RIU−1, respectively, in the refractive index (RI) range of 1.33 to 1.40. The sensors also exhibit promising wavelength resolution of 8.33 × 10−6, 9.09 × 10−6, and 1.0 × 10−6 RIU, with figure of merit (FOM) of 108, 143, and 217 RIU−1 for RSC, MSC, and SSC PCFs, respectively. The tunable sensing performance is also observed in design structures due to controllable light traveling path and their interaction with analytes. The proposed alphabetic-core PCF SPR sensors would be a promising candidate for the application of light controlling, trapping in microscale environment, and biosensing.

  相似文献   

17.

A multifunction plasmonic metasurface made of metal-dielectric-metal (MDM) layers is designed, and its chiral, absorption, and refractive index sensing properties are studied numerically using finite difference time domain (FDTD) computation. Top layer of the proposed novel metasurface consists of four L-shape gold strips arranged in a specific orientational sequence into a square unit cell whose period (along X direction and Y direction) is varied from 800 to 1400 nm in a step of 200 nm. The proposed super-structure shows highly chiral behaviour with multi bands circular dichroism (CD) between ~ 600 and 1200 nm with highest CD value of about 0.4. The CD spectral response is seen to be tunable with the structural parameters such as periods and appropriate L-strip length. True chiral nature of the proposed structure is cross-checked by computing its enantiomer that shows a mirror reflection of CD response of the original structure. Multi-work functionalities are investigated by studying perfect absorption and refractive index sensing properties of the metasurface. The study shows polarization independent multi-resonance spectral absorption that reaches to ~ 100% in some cases. On the other hand, refractive index sensing study shows high sensitivity (S) of 700–750 nm/RIU (per refractive index unit) with figure of merit (FOM) of 5–10. Owing to its exotic optical properties, the novel metasurface may be considered for chip level integration for multi-purpose work functionalities.

  相似文献   

18.

We theoretically propose a surface plasmon resonance (SPR)-based fiber optic refractive index (RI) sensor. A surface plasmon exciting metallic grating formed with the alternation of indium tin oxide (ITO) and silver (Ag) stripes is considered on the core of the fiber. A thin film of silicon is used as an overlay. Silicon film not only protects the metallic grating from oxidation but also enhances the field to improve the device sensitivity. The sensor is characterized in terms of sensitivity, detection accuracy (DA), figure of merit (FoM), and quality factor (QF). The maximum sensitivity in the RI range 1.33 to 1.38 refractive index unit (RIU) is reported to be?~25 µm/RIU in infra-red region of investigation.

  相似文献   

19.

This paper presents a simple multi-band metamaterial absorber for terahertz applications. The unit cell of the proposed structure consists of a single square ring having gaps at the centers on three of its sides. The proposed absorber produces three absorption bands for all polarizations and hence the design can be considered as insensitive to polarization variation. It provides an average absorption of 96.92% for the TE polarization with a peak absorption of 99.44% at 3.87 THz and for the TM polarization, it provides an average absorption of 98.4% with a peak absorption of 99.86% at 3.87 THz. An additional absorption peak is observed for the TE polarization at 1.055 THz that gradually diminishes with the increase in polarization angle and completely vanishes for the TM polarization. Thus, the structure displays a hybrid polarization response with polarization insensitivity in three bands and polarization sensitivity in one band. Parametric analysis has been carried out validating the optimal selection of the design parameters. The simplicity of the design and its combined polarization sensitive and polarization insensitive absorption characteristics can find tremendous applications in the field of terahertz imaging and sensing.

  相似文献   

20.

In this paper, a non-structured graphene sheet loaded with a sinusoidal-patterned dielectric is introduced as an ultra-wideband metamaterial absorber in terahertz regime. Regardless of conventional structures with multilayered-graphene, a single layer sheet of non-structured graphene is used whereas the proposed structure benefits from dielectric width modulation and cavity method in order to excite continuous graphene plasmon resonances. The structure comprises four layers that two Fabry-Perot cavity mirrors are constructed by upper sinusoidal-patterned dielectric and a gold film. Full wave simulation results demonstrate that a broadband over 90% absorption with absolute bandwidth of 6.58 THz and central frequency of 3.97 THz is achieved under normal TE/TM incident plane wave. The designed structure yields 166% relative bandwidth. According to the symmetric configuration, the absorption spectra of mentioned polarizations are thoroughly close to each other resulting to a polarization insensitive structure. The stability of bandwidth and absorbance of the structure versus angle of incidence, θ, up to 35°/65° for TM/TE polarizations, respectively, and azimuth angle, φ, shows an interesting capability for utilization as detectors and sensors. The simple geometry of utilized graphene layer results in easy fabrication. The designed structure has wideband absorption in THz regime. Moreover, it is more compact than conventional broadband THz absorbers.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号