首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The series of imidazoldine-2-thiones 2 and tetrahydropyrimidine-2-thiones 3 were discovered as inhibitor of α-MSH-induced melanin production in melanoma B16 cells. The primary bioassay showed that 1-(4-ethylbenzyl)-tetrahydropyrimidine-2(1H)-thione 3e (>100% inhibition at 10 μM, IC50 = 1.2 μM) and 1-(4-tert-butylbenzyl)-tetrahydropyrimidine-2(1H)-thione 3f (>100% inhibition at 10 μM, IC50 = 0.76 μM) exhibited potent inhibitory effect against α-MSH-induced melanin production. Compounds 3 inhibit the biosynthesis of tyrosinase without affecting its catalytic activity in melanogenesis.  相似文献   

2.
In search of potential therapeutics for inflammatory disease, we report herein the synthesis, characterization and anti-inflammatory activities of a new series of 1-{(5-substituted-1,3,4-oxadiazol-2-yl)methyl}-2-(morpholinomethyl)-1H-benzimidazoles (5a-r). The anti-inflammatory activity of the compounds was evaluated using carrageenan induced rat paw edema test. Some compounds showed excellent anti-inflammatory activity in carrageenan induced rat paw edema test. 1-{(5-(2-Chlorophenyl)-1,3,4-oxadiazol-2-yl)methyl}-2-(morpholinomethyl)-1H-benzimidazole (5g) showed maximum anti-inflammatory (74.17 ± 1.28% inhibition) with reduced ulcerogenic and lipid peroxidation profile and also showed significant COX-2 inhibition with IC50 values of 8.00 μM. Compounds 5o and 5q were also found to exhibit good COX-2 inhibition with IC50 values of 11.4 and 13.7 μM concentrations. Molecular docking study showed that morpholine and oxadiazole rings linked to the benzimidazole nucleus play an important role in binding with the COX-2.  相似文献   

3.
Pyrazole carboxylic acid amides of 5-amino-1,3,4-thiadiazole-2-sulfonamide 1 (inhibitor 1) were synthesized from 4-benzoyl-1-(4-nitrophenyl)-5-phenyl-1H-pyrazole-3-carbonyl chloride and 4-benzoyl-1-(3-nitrophenyl)-5-phenyl-1H-pyrazole-3-carbonyl chloride compounds. Human carbonic anhydrase isoenzymes (hCA-I and hCA-II) were purified from erythrocyte cells by the affinity chromatography. The inhibitory effects of inhibitor 1, acetazolamide (AAZ), and of 16 newly synthesized amides (8–11, 12af, 13ac, 14ab, and 15) on hydratase and esterase activities of these isoenzymes have been studied in vitro. The average IC50 values of the new compounds (8–11, 12af, 13ac, 14ab, and 15) for hydratase activity ranged from 3.25 to 4.75 μM for hCA-I and from 0.055 to 2.6 μM for hCA-II. The mean IC50 values of the same inhibitors for esterase activity were in the range of 2.7–6.6 μM for hCA-I (with the exception of inhibitor 10, which did not inhibit the esterase activity of hCA-I) and of 0.013–4.2 μM for hCA-II. The Ki values for new compounds (8–11, 12af, 13ac, 14ab, and 15) were observed well below that of the parent compound inhibitor 1 and were also comparable to that of AAZ under the same experimental conditions. The comparison of newly synthesized amides to inhibitor 1 and to AAZ indicated that the new derivatives preferentially inhibit hCA-II and are more potent inhibitors of hCA-II than the parent inhibitor 1 and AAZ.  相似文献   

4.
A combinatorial series of novel quinazolin-4(3H)-ones were synthesised and their structures were established based on spectroscopic data (IR, NMR, EI-MS, and FAB-MS). The compounds were tested for inhibition of the zinc metalloproteinase thermolysin (TLN) utilizing a chemical array-based approach. Some of the compounds were found to inhibit TLN, with IC50 values ranging from 0.0115 μM (compound 3) to 122,637 μM (compound 29). Compound 3 [3-phenyl-2-(trifluoromethyl) quinazolin-4(3H)-one] (IC50 = 0.0115 μM) and compound 35 [3-(isopropylideneamino)-2,2-dimethyl-2,3-dihydroquinazolin-4 (1H)-one] (IC50 = 0.2477 μM) were found to be the most potent inhibitors.  相似文献   

5.
A novel series of chromenone analogs were synthesized and evaluated for their inhibitory activity against interleukin-5. Among them 5-(cyclohexylmethoxy)-3-[3-hydroxy-3-(4-hydroxyphenyl)propyl]-4H-chromen-4-one (9b, 94% inhibition at 30 μM, IC50 = 4.0 μM) and 5-(cyclohexylmethoxy)-3-[3-hydroxy-3-(4-methoxyphenyl)propyl]-4H-chromen-4-one (9c, 94% inhibition at 30 μM, IC50 = 6.5 μM) showed the most potent activity. According to the SAR studies introduction of propanone unit in between chromenone and ring B as in 5-(cyclohexylmethoxy)-3-[3-(4-phenyl)-3-oxopropyl]-4H-chromen-4-ones (8) moderately increased the activity. However, the reduction of these propanones 8 to propanols 9 remarkably enhanced the activity. A small substituent at position 4 of ring B in 9, especially with hydrogen bonding capability, provides favorable contribution. Disappearance of IL-5 inhibitory activity upon saturation of chroman-4-one of 9 to chroman-4-ones 10 proves the critical importance of planar chromen-4-one unit of this scaffold in the IL-5 inhibition.  相似文献   

6.
The cytotoxic activities of sesquilignans, (7S,8S,7′R,8′R)- and (7R,8R,7′S,8′S)-morinol A and (7S,8S,7′S,8′S)- and (7R,8R,7′R,8′R)-morinol B were compared, showing no significant difference between stereoisomers (IC50 = 24–35 μM). As a next stage, the effect of substituents at 7, 7′, and 7″-aromatic ring on the activity was evaluated to find out the higher activity of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18 (IC50 = 6–7 μM). In the research on the structure–activity relationship of 7″-position of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18, the most potent compounds were 7,7′,7″-phenyl derivative 18 (IC50 = 6 μM) against HeLa cells. Against HL-60 cells, 7″-(4-nitrophenyl)-7,7′-phenyl derivative 33 and 7″-hexyl-7,7′-phenyl derivative 37 (IC50 = 5 μM) showed highest activity. We discovered the compounds showed four to sevenfold potent activity than that of natural (7S,8S,7′R,8′R)-morinol A. It was also confirmed that the 7′-benzylic hydroxy group have an important role for exhibiting activity, on the other hand, the resonance system of cinnamyl structure is not crucial for the potent activity.  相似文献   

7.
All possible isomers of N-β-d-glucopyranosyl aryl-substituted oxadiazolecarboxamides were synthesised. O-Peracetylated N-cyanocarbonyl-β-d-glucopyranosylamine was transformed into the corresponding N-glucosyl tetrazole-5-carboxamide, which upon acylation gave N-glucosyl 5-aryl-1,3,4-oxadiazole-2-carboxamides. The nitrile group of the N-cyanocarbonyl derivative was converted to amidoxime which was ring closed by acylation to N-glucosyl 5-aryl-1,2,4-oxadiazole-3-carboxamides. A one-pot reaction of protected β-d-glucopyranosylamine with oxalyl chloride and then with arenecarboxamidoximes furnished N-glucosyl 3-aryl-1,2,4-oxadiazole-5-carboxamides. Removal of the O-acetyl protecting groups by the Zemplén method produced test compounds which were evaluated as inhibitors of glycogen phosphorylase. Best inhibitors of these series were N-(β-d-glucopyranosyl) 5-(naphth-1-yl)-1,2,4-oxadiazol-3-carboxamide (Ki = 30 μM), N-(β-d-glucopyranosyl) 5-(naphth-2-yl)-1,3,4-oxadiazol-2-carboxamide (Ki = 33 μM), and N-(β-d-glucopyranosyl) 3-phenyl-1,2,4-oxadiazol-5-carboxamide (Ki = 104 μM). ADMET property predictions revealed these compounds to have promising oral drug-like properties without any toxicity.  相似文献   

8.
A series of novel 5-((1-aroyl-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-diones (3az) have been evaluated for in vitro cytotoxicity against a panel of 60 human tumor cell lines. Compound 3k exhibited the most potent growth inhibition against melanoma MDA-MB-435 cells (GI50 = 850 nM), against leukemia SR cancer cells (GI50 = 1.45 μM), and OVCAR-3 (GI50 = 1.26 μM) ovarian cancer cell lines. The structurally related compound 3s had a GI50 value of 1.77 μM against MDA-MB-435 cells. The N-naphthoyl analogue 3t had GI50 values of 1.30 and 1.91 μM against HOP-92 non-small cell lung cancer and MDA-MB-435 melanoma cell lines, respectively. The related analogue 3w had GI50 values of 1.09 μM against HOP-92 non-small cell lung cancer cell lines. Interestingly, docking of the two active molecules 3k and 3w into the active site of COX-2 indicates that these compounds are COX-2 ligands with strong hydrophobic and hydrogen bonding interactions. Thus, compounds 3k, 3t, 3s, and 3w constitute a new class of anticancer/anti-inflammatory agents that may have unique potential for cancer therapy.  相似文献   

9.
A novel series of 2-(3-phenethyl-4(3H)quinazolin-2-ylthio)-N-substituted anilide and substituted phenyl 2-(3-phenethyl-4(3H) quinazolin-2-ylthio)acetate were designed, synthesized and evaluated for their in-vitro antitumor activity. Compound 15 possessed remarkable broad-spectrum antitumor activity which almost sevenfold more active than the known drug 5-FU with GI50 values of 3.16 and 22.60 μM, respectively. Compound 15 exhibited remarkable growth inhibitory activity pattern against renal cancer (GI50 = 1.77 μM), colon cancer (GI50 = 2.02 μM), non-small cell lung cancer (GI50 = 2.04 μM), breast cancer (GI50 = 2.77 μM), ovarian cancer (GI50 = 2.55 μM) and melanoma cancer (GI50 = 3.30 μM). Docking study was performed for compound 15 into ATP binding site of EGFR-TK which showed similar binding mode to erlotinib.  相似文献   

10.
A series of 4,5-diaryl-1H-imidazole-2(3H)-thione was synthesized and their inhibitory potency against soybean 15-lipoxygenase and free radical scavenging activities were determined. Compound 11 showed the best IC50 for 15-LOX inhibition (IC50 = 4.7 μM) and free radical scavenging activity (IC50 = 14 μM). Methylation of SH at C2 position of imidazole has dramatically decreased the 15-LOX inhibition and radical scavenging activity as it can be observed in the inactive compound 14 (IC50 >250 μM). Structure activity similarity (SAS) showed that the most important chemical modification in this series was methylation of SH group and Docking studies revealed a proper orientation for SH group towards Fe core of the 15-LOX active site. Therefore it was concluded that iron chelating could be a possible mechanism for enzyme inhibition in this series of compounds.  相似文献   

11.
1,2-Benzisothiazol-3(2H)-ones and 1,3,4-oxadiazoles individually have recently attracted considerable interest in drug discovery, including as antibacterial and antifungal agents. In this study, a series of functionalized 1,2-benzisothiazol-3(2H)-one—1,3,4-oxadiazole hybrid derivatives were synthesized and subsequently screened against Dengue and West Nile virus proteases. Ten out of twenty-four compounds showed greater than 50% inhibition against DENV2 and WNV proteases ([I] = 10 μM). The IC50 values of compound 7n against DENV2 and WNV NS2B/NS3 were found to be 3.75 ± 0.06 and 4.22 ± 0.07 μM, respectively. The kinetics data support a competitive mode of inhibition by compound 7n. Molecular modeling studies were performed to delineate the putative binding mode of this series of compounds. This study reveals that the hybrid series arising from the linking of the two scaffolds provides a suitable platform for conducting a hit-to-lead optimization campaign via iterative structure–activity relationship studies, in vitro screening and X-ray crystallography.  相似文献   

12.
Bioassay guided fractionation of the roots of Lantana montevidensis (Verbenaceae) has resulted in the isolation and identification of three new triterpenoids; 13β-hydroxy-3-oxo-olean-11-en-28-oic acid (1), 12β,13β-dihydroxyolean-3-oxo-28-oic acid (2) and 12β,13β,22β-trihydroxyolean-3-oxo-28-oic acid (3) in addition to nine known compounds: oleanonic acid (4), oleanolic acid (5), 3β,25β-dihydroxy-olean-12-en-28-oic acid (6), lantadene A (7), 19α-hydroxy-3-oxo-olean-12-en-28-oic acid (8) pomolic acid (9), camaric acid (10) together with β-sitosterol (11) and β-sitosterol-3-O-β-d-glucoside (12). The structures of the isolated metabolites were elucidated based on comprehensive 1D and 2D NMR spectroscopic data as well as HR-ESI–MS. The extracts and the isolated metabolites were evaluated for their antiprotozoal and antimicrobial activities. Compound 2 showed antibacterial activity against Staphylococcus aureus and methicillin resistant S. aureus with IC50 values against both organisms of 2.1 μM and compound 10 showed activity against same organisms with IC50 values 8.74 and 8.09 μM, respectively, compared to the positive control ciprofloxacin (IC50 = 0.3 μM against S. aureus and MRSA). Compounds 1, 4, 5, 6, and 10 showed moderate antileishmanial activity with IC50 values ranging between (2.54–14.95 μM) and IC90 values ranging between (11.90–19.47 μM), using pentamidine as a control (IC50 values 2.09  16.8 μM) and IC90 values ranging between (4.72  16.8 μM). These compounds also showed highly potent antitrypanosomal activity with IC50 values ranging between (0.39–7.12 μM) and IC90 values ranging between (1.91–10.51 μM), which are more efficient than the DFMO, the antitrypanosomal drug employed as positive control (IC50 and IC90values 11.82 and 30.82 μM).  相似文献   

13.
Bioassay-guided fractionation of an EtOAc-soluble extract of Acanthopanax senticosus (Rupr. & Maxim.) Harms yielded two new diphenyl ethers, 3-[3′-methoxy-4′-(4″-formyl-2″,6″-dimethoxy-phenoxy)-phenyl]-propenal (1) and 3-[3′,5′-dihydroxy-4′-(4″-hydroxymethyl-3″,5″-dimethoxy-phenoxy)-phenyl]-propenal (2), along with eight other known compounds (310). The structures of these new ethers were elucidated with spectroscopic and physico-chemical analyses. All of the isolates were evaluated for their in vitro inhibitory activity against PTP1B, VHR and PP1. The new compounds (1 and 2) inhibited PTP1B with IC50 values ranging from 9.2 ± 1.4 to 12.6 ± 1.2 μM.  相似文献   

14.
Twenty derivatives of 5-aryl-2-(6′-nitrobenzofuran-2′-yl)-1,3,4-oxadiazoles (120) were synthesized and evaluated for their α-glucosidase inhibitory activities. Compounds containing hydroxyl and halogens (16, and 818) were found to be five to seventy folds more active with IC50 values in the range of 12.75 ± 0.10–162.05 ± 1.65 μM, in comparison with the standard drug, acarbose (IC50 = 856.45 ± 5.60 μM). Current study explores the α-glucosidase inhibition of a hybrid class of compounds of oxadiazole and benzofurans. These findings may invite researchers to work in the area of treatment of hyperglycemia. Docking studies showed that most compounds are interacting with important amino acids Glu 276, Asp 214 and Phe 177 through hydrogen bonds and arene-arene interaction.  相似文献   

15.
Protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is the action target for several structurally diverse herbicides. A series of novel 4-(difluoromethyl)-1-(6-halo-2-substituted-benzothiazol-5-yl)-3-methyl-1H-1,2,4-triazol-5(4H)-ones 2az were designed and synthesized via the ring-closure of two ortho-substituents. The in vitro bioassay results indicated that the 26 newly synthesized compounds exhibited good PPO inhibition effects with Ki values ranging from 0.06 to 17.79 μM. Compound 2e, ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzo-thiazol-2-yl]thio}acetate, was the most potent inhibitor with Ki value of 0.06 μM against mtPPO, comparable to (Ki = 0.03 μM) sulfentrazone. Further green house assays showed that compound 2f (Ki = 0.24 μM, mtPPO), ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzothiazol-2-yl]thio}propanoate, showed the most promising post-emergence herbicidal activity with broad spectrum even at concentrations as low as 37.5 g ai/ha. Soybean exhibited tolerance to compound 2f at the dosages of 150 g ai/ha, whereas they are susceptible to sulfentrazone even at 75 g ai/ha. Thus, compound 2f might be a potential candidate as a new herbicide for soybean fields.  相似文献   

16.
Thymidine phosphorylase (TP) inhibitors have attracted great attention due to their ability to suppress the tumors formation. In our ongoing research, a series of 1,3,4-oxadiazole-2-thione (112) has been synthesized under simple reaction conditions in good to excellent yields (86–98%) and their TP inhibition potential has also been evaluated. The majority of synthesized compounds showed moderate thymidine phosphorylase inhibitory activity with IC50 values ranging from 38.24 ± 1.28 to 258.43 ± 0.43 μM, and 7-deazaxanthine (7DX) was used as a reference compound (IC50 38.68 ± 4.42). The TP activity was very much dependent on the C-5 substituents; among this series the compound 6 bearing 4-hydroxyphenyl group was found to be the most active with IC50 38.24 ± 1.28 μM. Molecular docking studies revealed their binding mode.  相似文献   

17.
Several new 5,6-dihydropyrimidine-2(1H)-thione derivatives have been prepared and investigated for their potencies for anticonvulsant activity against maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) test in mice. The acute neurotoxicity was measured by rotarod test. Compounds 3c and 3l were found active in both of the animal models. Further, in vitro GABA-AT enzyme activity assay was carried out to investigate the possible mechanism of action through GABA-AT inhibition. The most potent compounds 3c and 3l showed inhibitory potency (IC50) of 18.42 μM and 19.23 μM, respectively. The molecular modeling was performed for all the synthesized compounds. The docking results were found in concordant with the observed animal studies.  相似文献   

18.
In an effort to prepare a fluorogenic substrate to be used in activity assays with metallo-β-lactamases, (6R,7R)-8-oxo-7-(2-oxo-2H-chromene-3-carboxamido)-3-((4-(2-oxo-2H-chromene-3-carboxamido)-phenylthio)methyl)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (CA) was synthesized and characterized. CA exhibited a fluorescence quantum yield (φ) of 0.0059, two fluorescence lifetimes of 3.63 × 10?10 and 5.38 × 10?9 s, and fluorescence intensity that is concentration-dependent. Steady-state kinetic assays revealed that CA is a substrate for metallo-β-lactamases (MβLs) L1 and CcrA, exhibiting Km and kcat values of 18 μM and 5 s?1 and 11 μM and 17 s?1, respectively.  相似文献   

19.
A new series of 5-(1-aryl-3-methyl-1H-pyrazol-4-yl)-1H-tetrazole derivatives (4am) and their precursor 1-aryl-3-methyl-1H-pyrazole-4-carbonitriles (3am) were synthesized and evaluated as antileishmanials against Leishmania braziliensis and Leishmania amazonensis promastigotes in vitro. In parallel, the cytotoxicity of these compounds was evaluated on the RAW 264.7 cell line. The results showed that among the assayed compounds the substituted 3-chlorophenyl (4a) (IC50/24 h = 15 ± 0.14 μM) and 3,4-dichlorophenyl tetrazoles (4d) (IC50/24 h = 26 ± 0.09 μM) were the most potent against L. braziliensis promastigotes, as compared the reference drug pentamidine, which presented IC50 = 13 ± 0.04 μM. In addition, 4a and 4d derivatives were less cytotoxic than pentamidine. However, these tetrazole derivatives (4) and pyrazole-4-carbonitriles precursors (3) differ against each of the tested species and were more effective against L.braziliensis than on L. amazonensis.  相似文献   

20.
In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16 ± 0.06 μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50 = 2.94 ± 1.23 μM for ARL1 and 0.12 ± 0.05 μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50 = 1.71 ± 0.01 μM for ARL1 and 0.11 ± 0.001 μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50 = 0.459 ± 0.001 μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号