首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of high temperature stress on polyamine catabolism and antioxidant enzyme activity in relation to glutathione, ascorbate and proline accumulation was studied in five wheat (Triticum aestivum L.) genotypes (differently susceptible to temperature stress). High temperature significantly increased the activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and glutathione S-transferase (GST) in shoots of all genotypes. Higher activities of GPX in C 306, C 273 and APX in PBW 550, PBW 343 and PBW 534 demonstrate their important role in scavenging H2O2. Conversely, high temperature stress led to a significant decline in SOD, CAT, APX and GPX activities of roots with a subsequent increase in diamine oxidase (DAO) and polyamine oxidase (PAO) activities especially in PBW 550 and PBW 343. The concentration of ascorbic acid declined with the imposition of heat stress, however, polyamines responded to high temperature stress by increasing spermidine and spermine levels and decreasing putrescine levels. After exposure to high temperature, proline accumulation was significantly decreased in roots and increased in shoots though maximum concentration was achieved in C 306 genotype. Apparently, the wheat seedlings respond to high temperature mediated increase in reactive oxygen species (ROS) production by altering antioxidative defense mechanism and polyamine catabolism though differentially in five wheat genotypes. Among five genotypes studied, C 306 and C 273 seem to be better protected against temperature stress. The results suggested that shoots were more resistant against the destructive effects of ROS as is indicated by low levels of thiobarbituric acid reactive substances under high temperature stress.  相似文献   

2.
The diamine putrescine (Put) has been shown to accumulate in tree leaves in response to high Al and low Ca in the soil, leading to the suggestion that this response may provide a physiological advantage to leaf cells under conditions of Al stress. The increase in Put is reversed by Ca supplementation in the soil. Using two cell lines of poplar (Populus nigra × maximowiczii), one with constitutively high Put (resulting from transgenic expression of a mouse ornithine decarboxylase – called HP cells) and the other with low Put (control cells), we investigated the effects of reduced Ca (0.2–0.8 mM vs. 4 mM) and treatment with 0.1 mM Al on several biochemical parameters of cells. We found that in the presence of reduced Ca concentration, the HP cells were at a disadvantage as compared to control cells in that they showed greater reduction in mitochondrial activity and a reduction in the yield of cell mass. Upon addition of Al to the medium, the HP cells, however, showed a reversal of low-Ca effects. We conclude that due to increased ROS production in the HP cells, their tolerance to low Ca is compromised. Contrary to the expectation of deleterious effects, the HP cells showed an apparent advantage in the presence of Al in the medium, which could have come from reduced uptake of Al, enhanced extrusion of Al following its accumulation, and perhaps a reduction in Put catabolism as a result of a reduction in its biosynthesis.  相似文献   

3.
The accumulation of reactive oxygen species (ROS) and concomitant oxidative stress have been considered deleterious consequences of aluminum toxicity. However, several lines of evidence suggest that ROS can function as important signaling molecules in the plant defense system for protection from abiotic stress and the acquisition of tolerance. The role of ROS-scavenging enzymes was assayed in two different coffee cell suspension lines. We treated L2 (Al-sensitive) and LAMt (Al-tolerant) Coffea arabica suspension cells with 100 μM AlCl3 and observed significant differences in catalase activity between the two cell lines. However, we did not observe any differences in superoxide dismutase or glutathione reductase activity in either cell line following Al treatment. ROS production was diminished in the LAMt cell line. Taken together, these results indicate that aluminum treatment may impair the oxidative stress response in L2 cells but not in LAMt cells. We suggest a possible role for Al-induced oxidative bursts in the signaling pathways that lead to Al resistance and protection from Al toxicity.  相似文献   

4.
Cellular mechanisms that maintain redox homeostasis are crucial, providing buffering against oxidative stress. Glutathione, the most abundant low molecular weight thiol, is considered the major cellular redox buffer in most cells. To better understand how cells maintain glutathione redox homeostasis, cells of Saccharomyces cerevisiae were treated with extracellular oxidized glutathione (GSSG), and the effect on intracellular reduced glutathione (GSH) and GSSG were monitored over time. Intriguingly cells lacking GLR1 encoding the GSSG reductase in S. cerevisiae accumulated increased levels of GSH via a mechanism independent of the GSH biosynthetic pathway. Furthermore, residual NADPH-dependent GSSG reductase activity was found in lysate derived from glr1 cell. The cytosolic thioredoxin-thioredoxin reductase system and not the glutaredoxins (Grx1p, Grx2p, Grx6p, and Grx7p) contributes to the reduction of GSSG. Overexpression of the thioredoxins TRX1 or TRX2 in glr1 cells reduced GSSG accumulation, increased GSH levels, and reduced cellular glutathione Eh′. Conversely, deletion of TRX1 or TRX2 in the glr1 strain led to increased accumulation of GSSG, reduced GSH levels, and increased cellular Eh′. Furthermore, it was found that purified thioredoxins can reduce GSSG to GSH in the presence of thioredoxin reductase and NADPH in a reconstituted in vitro system. Collectively, these data indicate that the thioredoxin-thioredoxin reductase system can function as an alternative system to reduce GSSG in S. cerevisiae in vivo.  相似文献   

5.
Low temperature combined with low light (LL) affects crop production, especially the yield and quality of peppers, in northwest China during the winter and spring seasons. Zeaxanthin (Z) is a known lipid protectant and active oxygen scavenger. However, whether exogenous Z can mitigate LL-induced inhibition of photosynthesis and oxidative stress in peppers remains unclear. In this study, we investigated the effects of exogenous Z on photosynthesis and the antioxidant machinery of pepper seedlings subject to LL stress. The results showed that the growth and photosynthesis of pepper seedlings were significantly inhibited by LL stress. In addition, the antioxidant machinery was disturbed by the uneven production and elimination of reactive oxygen species (ROS), which resulted in damage to the pepper. For example, membrane lipid peroxidation increased ROS content, and so on. However, exogenous application of Z before LL stress significantly increased the plant height, stem diameter, net photosynthetic rate (Pn), and stomata, which were obviously closed at LL. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), mono de-hydroascorbate reductase (MDHAR), de-hydroascorbate reductase (DHAR), ascorbate peroxidase (APX), and ascorbate oxidase (AAO) improved significantly due to the increased expression of CaSOD, CaCAT, CaAPX, CaMDHAR, and CaDHAR. The ascorbic (AsA) and glutathione (GSH) contents and ascorbic/dehydroascorbate (AsA/DHA) and glutathione/oxidized glutathione (GSH/GSSG) ratios also increased significantly, resulting in the effective removal of hydrogen peroxide (H2O2) and superoxide anions (O2•−) caused by LL stress. Thus, pre-treatment with Z significantly reduced ROS accumulation in pepper seedlings under LL stress by enhancing the activity of antioxidant enzymes and accumulation of components of the ascorbate–glutathione (AsA–GSH) cycle and upregulated key genes in the AsA–GSH cycle.  相似文献   

6.
Glutathione Protects Lactococcus lactis against Oxidative Stress   总被引:4,自引:0,他引:4       下载免费PDF全文
Glutathione was found in several dairy Lactococcus lactis strains grown in M17 medium. None of these strains was able to synthesize glutathione. In chemically defined medium, L. lactis subsp. cremoris strain SK11 was able to accumulate up to ~60 mM glutathione when this compound was added to the medium. Stationary-phase cells of strain SK11 grown in chemically defined medium supplemented with glutathione showed significantly increased resistance (up to fivefold increased resistance) to treatment with H2O2 compared to the resistance of cells without intracellular glutathione. The resistance to H2O2 treatment was found to be dependent on the accumulation of glutathione in 16 strains of L. lactis tested. We propose that by taking up glutathione, L. lactis might activate a glutathione-glutathione peroxidase-glutathione reductase system in stationary-phase cells, which catalyzes the reduction of H2O2. Glutathione reductase, which reduces oxidized glutathione, was detectable in most strains of L. lactis, but the activities of different strains were very variable. In general, the glutathione reductase activities of L. lactis subsp. lactis are higher than those of L. lactis subsp. cremoris, and the activities were much higher when strains were grown aerobically. In addition, glutathione peroxidase is detectable in strain SK11, and the level was fivefold greater when the organism was grown aerobically than when the organism was grown anaerobically. Therefore, the presence of glutathione in L. lactis could result in greater stability under storage conditions and quicker growth upon inoculation, two important attributes of successful starter cultures.  相似文献   

7.
Aluminum (Al) stress represses mitochondrial respiration and produces reactive oxygen species (ROS) in plants. Mitochondrial alternative oxidase (AOX) uncouples respiration from mitochondrial ATP production and may improve plant performance under Al stress by preventing excess accumulation of ROS. We tested respiratory changes and ROS production in isolated mitochondria and whole cell of tobacco (SL, ALT 301) under Al stress. Higher capacities of AOX pathways relative to cytochrome pathways were observed in both isolated mitochondria and whole cells of ALT301 under Al stress. AOX1 when studied showed higher AOX1 expression in ALT 301 than SL cells under stress. In order to study the function of tobacco AOX gene under Al stress, we produced transformed tobacco cell lines by introducing NtAOX1 expressed under the control of the cauliflower mosaic virus (CaMV) 35 S promoter in sensitive (SL) Nicotiana tabacum L. cell lines. The enhancement of endogenous AOX1 expression and AOX protein with or without Al stress was in the order of transformed tobacco cell lines > ALT301 > wild type (SL). A decreased respiratory inhibition and reduced ROS production with a better growth capability were the significant features that characterized AOX1 transformed cell lines under Al stress. These results demonstrated that AOX plays a critical role in Al stress tolerance with an enhanced respiratory capacity, reducing mitochondrial oxidative stress burden and improving the growth capability in tobacco cells.  相似文献   

8.
Drought stress has a negative impact on plant cells and results in the generation of reactive oxygen species (ROS). To increase our understanding of the effects of drought stress on antioxidant processes, we investigated the response of the ascorbate-deficient Arabidopsis thaliana vtc1 mutant to drought stress. After drought stress, vtc1 mutants exhibited increases in several oxidative parameters, including H2O2 content and the production of thiobarbituric acid reactive substances. Decreases in chlorophyll content and chlorophyll fluorescence parameters were also observed. The vtc1 mutants had higher total glutathione than did wild-type (WT) plants after 48 h of drought stress. A reduced ratio of glutathione/total glutathione and an increased ratio of dehydroascorbate/total ascorbate were observed in the vtc1 mutants compared with the WT plants. In addition, the activities of enzymes that are responsible for ROS scavenging, including superoxide dismutase, catalase, and ascorbate peroxidase, were decreased in the vtc1 mutants compared with the WT plants. Similar reductions in activity in the vtc1 mutant were observed for the enzymes that are responsible for the regeneration of ascorbate and glutathione, including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase. These results suggest that low intrinsic ascorbate and impaired ascorbate–glutathione cycling in the vtc1 mutant induced a decrease in the reduced form of ascorbate, which enhanced sensitivity to drought stress.  相似文献   

9.
A highly oxidative stress-tolerant japonica rice line was isolated by T-DNA insertion mutation followed by screening in the presence of 50 mM H2O2. The T-DNA insertion was mapped to locus Os09g0547500, the gene product of which was annotated as lysine decarboxylase-like protein (GenBank accession No. AK062595). We termed this gene OsLDC-like 1, for Oryza sativa lysine decarboxylase-like 1. The insertion site was in the second exon and resulted in a 27 amino acid N-terminal deletion. Despite this defect in OsLDC-like 1, the mutant line exhibited enhanced accumulation of the polyamines (PAs) putrescine, spermidine, and spermine under conditions of oxidative stress. The generation of reactive oxygen species (ROS) in the mutant line was assessed by qRT-PCR analysis of NADPH oxidase (RbohD and RbohF), and by DCFH-DA staining. Cellular levels of ROS in osldc-like 1 leaves were significantly lower than those in the wild-type (WT) rice after exposure to oxidative, high salt and acid stresses. Exogenouslyapplied PAs such as spermidine and spermine significantly inhibited the stress-induced accumulation of ROS and cell damage in WT leaves. Additionally, the activities of ROS-detoxifying enzymes were increased in the homozygous mutant line in the presence or absence of H2O2. Thus, mutation of OsLDC-like 1 conferred an oxidative stress-tolerant phenotype. These results suggest that increased cellular PA levels have a physiological role in preventing stress-induced ROS and ethylene accumulation and the resultant cell damage.  相似文献   

10.
Reactive oxygen species (ROS) released from polymorphonuclear leukocytes and macrophages could cause DNA damage, but also induce cell death. Therefore inhibition of cell death must be an important issue for accumulation of genetic changes in lymphoid cells in inflammatory foci. Scavengers in the post culture medium of four lymphoid cell lines, lymphoblastoid cell lines (LCL), Raji, BJAB and Jurkat cells, were examined. Over 80% of cultured cells showed cell death 24 h after xanthine (X)/xanthine oxidase (XOD) treatment, which was suppressed by addition of post culture medium from four cell lines in a dose-dependent manner. H2O2 but not O·-2 produced by the X/XOD reaction was responsible for the cytotoxity, thus we used H2O2 as ROS stress thereafter. The H2O2-scavenging activity of post culture media from four cell lines increased rapidly at the first day and continued to increase in the following 2–3 days for LCL, Raji and BJAB cells. The scavenging substance was shown to be pyruvate, with various concentrations in the cultured medium among cell lines. Over 99% of total pyruvate was present in the extracellular media and less than 1% in cells. α-Cyano-4-hydroxycinnamate, a specific inhibitor of the H+-monocarbohydrate transporter, increased the H2O2-scavenging activity in the media from all four cell lines via inhibition of pyruvate re-uptake by cultured cells from the media. These findings suggest that lymphoid cells in inflammatory foci could survive even under ROS by producing pyruvate, so that accumulation of lymphoid cells with DNA damage is possible.  相似文献   

11.
Three transgenic European pear (Pyrus communis L.) lines with reduced spermidine synthase (SPDS) expression and spermidine (Spd) titers were developed using a construct containing an apple SPDS gene (MdSPDS1) in antisense orientation. After exposure to either salt or cadmium stress, growth inhibition was more severe in the antisense lines than in the wild-type (WT). The antioxidant system, as shown by glutathione (GSH) content, activity of glutathione reductase (GR) and superoxide dismutase (SOD), and proline accumulation, was not effectively induced under stress in the antisense lines as compared with the WT. The reduction in antioxidant system function in the antisense lines was accompanied by a greater accumulation of malondialdehyde (MDA), an indicator of lipid peroxidation. Growth inhibition, Spd level, and parameters indicative of the antioxidant system were significantly ameliorated by exogenous Spd application. Under either salt or cadmium stress, GSH content, GR and SOD activity, and proline accumulation were positively correlated with Spd, putrescine (Put), and total polyamine titers. Conversely, MDA level showed a significantly negative correlation with these polyamines under both stress conditions. Thus, the responses to stress treatments were first identified in the SPDS antisense European pears, and the results provide further evidence for the important role of polyamines in both salt and cadmium stress tolerance, in which the polyamines act, at least in part, by influencing the antioxidant system.  相似文献   

12.
13.
Fusarium head blight (FHB) or scab is one of the most important plant diseases worldwide, affecting wheat, barley and other small grains. Trichothecene mycotoxins such as deoxynivalenol (DON) accumulate in the grain, presenting a food safety risk and health hazard to humans and animals. Despite considerable breeding efforts, highly resistant wheat or barley cultivars are not available. We screened an activation tagged Arabidopsis thaliana population for resistance to trichothecin (Tcin), a type B trichothecene in the same class as DON. Here we show that one of the resistant lines identified, trichothecene resistant 1 (trr1) contains a T-DNA insertion upstream of two nonspecific lipid transfer protein (nsLTP) genes, AtLTP4.4 and AtLTP4.5. Expression of both nsLTP genes was induced in trr1 over 10-fold relative to wild type. Overexpression of AtLTP4.4 provided greater resistance to Tcin than AtLTP4.5 in Arabidopsis thaliana and in Saccharomyces cerevisiae relative to wild type or vector transformed lines, suggesting a conserved protection mechanism. Tcin treatment increased reactive oxygen species (ROS) production in Arabidopsis and ROS stain was associated with the chloroplast, the cell wall and the apoplast. ROS levels were attenuated in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls. Exogenous addition of glutathione and other antioxidants enhanced resistance of Arabidopsis to Tcin while the addition of buthionine sulfoximine, an inhibitor of glutathione synthesis, increased sensitivity, suggesting that resistance was mediated by glutathione. Total glutathione content was significantly higher in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls, highlighting the importance of AtLTP4.4 in maintaining the redox state. These results demonstrate that trichothecenes cause ROS accumulation and overexpression of AtLTP4.4 protects against trichothecene-induced oxidative stress by increasing the glutathione-based antioxidant defense.  相似文献   

14.
Selected variant cell lines of Haplopappus gracilis (Nutt) Gray that showed disturbed growth after transfer from an alanine medium to NO3 medium were characterized. The in vivo NO3 reductase activity (NRA) was lower in these lines than in the wild type. In vitro NRA assays suggest that decreased in vivo NRA was not caused by a lower amount of active enzyme. Cells of the variant lines revealed up to 75% lower extractable activity of NO2 reductase as compared with the wild type. This coincided with higher accumulation of NO2 by the variant than by the wild type cells after transfer from alanine medium to NO3 medium. NO2 accumulation was transient or continuous, depending on cell line, metabolic state of the cells, and light conditions.  相似文献   

15.
Three tobacco cell lines have been analyzed which are resistant to lethal inhibitors of either putrescine production or conversion of putrescine into polyamines. Free and conjugated putrescine pools, the enzymic activities (arginine, ornithine, and S-adenosylmethionine decarboxylases), and the growth characteristics during acidic stress were measured in suspension cultures of each cell line. One cell line, resistant to difluoromethylornithine (Dfr1) had a very low level of ornithine decarboxylase activity which was half insensitive to the inhibitor in vitro. Intracellular free putrescine in Dfr1 was elevated 10-fold which was apparently due to a 20-fold increase in the arginine decarboxylase activity. The increased free putrescine titer was not reflected in an increased level of spermidine, spermine, or putrescine conjugation. Dfr1 cultures survived acidic stress at molarities which were lethal to wild type cultures. Two other mutants, resistant to methylglyoxal bis(guanylhydrazone) (Mgr3, Mgr12), had near normal levels of the three decarboxylases and normal titers of free putrescine, spermidine, and spermine. Both mutants however had elevated levels of conjugated putrescine. Mgr12 had an increased sensitivity to acidic medium. These results suggest that increased levels of free putrescine production may enhance the ability of tobacco cells to survive acid stress. This was supported by the observation that cytotoxic effects of inhibiting arginine decarboxylase in wild type cell lines were dependent on the acidity of the medium.  相似文献   

16.
Cancer cells are highly metabolically active and produce high levels of reactive oxygen species (ROS). Drug resistance in cancer cells is closely related to their redox status. The role of ROS and its impact on cancer cell survival seems far from elucidation. The mechanisms through which glioblastoma cells overcome aberrant ROS and oxidative stress in a milieu of hypermetabolic state is still elusive. We hypothesize that the formidable growth potential of glioma cells is through manipulation of tumor microenvironment for its survival and growth, which can be attributed to an astute redox regulation through a nexus between activation of N‐methyl‐d ‐aspartate receptor (NMDAR) and glutathione (GSH)‐based antioxidant prowess. Hence, we examined the NMDAR activation on intracellular ROS level, and cell viability on exposure to hydrogen peroxide (H2O2), and antioxidants in glutamate‐rich microenvironment of glioblastoma. The activation of NMDAR attenuated the intracellular ROS production in LN18 and U251MG glioma cells. MK‐801 significantly reversed this effect. On evaluation of GSH redox cycle in these cells, the level of reduced GSH and glutathione reductase (GR) activity were significantly increased. NMDAR significantly enhanced the cell viability in LN18 and U251MG glioblastoma cells, by attenuating exogenous H2O2‐induced oxidative stress, and significantly increased catalase activity, the key antioxidant that detoxifies H2O2. We hereby report an unexplored role of NMDAR activation induced protection of the rapidly multiplying glioblastoma cells against both endogenous ROS as well as exogenous oxidative challenges. We propose potentiation of reduced GSH, GR, and catalase in glioblastoma cells through NMDAR as a novel rationale of chemoresistance in glioblastoma.  相似文献   

17.
In order to study the mechanisms behind the infection process of the necrotrophic fungus Botrytis cinerea, the subcellular distribution of hydrogen peroxide (H2O2) was monitored over a time frame of 96 h post inoculation (hpi) in Arabidopsis thaliana Col-0 leaves at the inoculation site (IS) and the area around the IS which was defined as area adjacent to the inoculation site (AIS). H2O2 accumulation was correlated with changes in the compartment-specific distribution of ascorbate and glutathione and chloroplast fine structure. This study revealed that the severe breakdown of the antioxidative system, indicated by a drop in ascorbate and glutathione contents at the IS at later stages of infection correlated with an accumulation of H2O2 in chloroplasts, mitochondria, cell walls, nuclei and the cytosol which resulted in the development of chlorosis and cell death, eventually visible as tissue necrosis. A steady increase of glutathione contents in most cell compartments within infected tissues (up to 600% in chloroplasts at 96 hpi) correlated with an accumulation of H2O2 in chloroplasts, mitochondria and cell walls at the AIS indicating that high glutathione levels could not prevent the accumulation of reactive oxygen species (ROS) which resulted in chlorosis. Summing up, this study reveals the intracellular sequence of events during Botrytis cinerea infection and shows that the breakdown of the antioxidative system correlated with the accumulation of H2O2 in the host cells. This resulted in the degeneration of the leaf indicated by severe changes in the number and ultrastructure of chloroplasts (e.g. decrease of chloroplast number, decrease of starch and thylakoid contents, increase of plastoglobuli size), chlorosis and necrosis of the leaves.  相似文献   

18.
Tobacco (Nicotiana tabacum var Samsun) was transformed using the bacterial gor gene coding for the enzyme glutathione reductase. Transgenic plants were selected by their kanamycin resistence and expression of the bacterial gor gene. After separation by isoelectric focusing techniques, leaf extracts from transgenic plants having both native and bacterial glutathione reductase activity gave, in addition to the six bands of the native enzyme, two further closely running isoenzymes. These additional bands originating from the expression of the bacterial gor gene were nonchloroplastic. Leaves from transgenic plants had two- to 10-fold higher glutathione reductase activity than non-transgenic controls. The amount of extractable glutathione reductase activity obtained in transgenic plants was dependent on leaf age and the conditions to which leaves were exposed. Both light and exposure to methylviologen increased leaf glutathione reductase activity. Elevated levels of cytosolic glutathione reductase activity in transgenic plants had no effect on the amount or reduction state of the reduced glutathione/oxidized glutathione pool under optimal conditions or oxidative conditions induced by methylviologen. The glutathione pool was unaltered despite the oxidation-dependent loss of CO2 assimilation and oxidation of enzymes involved in photosynthesis. However, the reduction state of the ascorbate pool was greater in transgenic plants relative to nontransgenic controls following illumination of methylviologen-treated leaf discs. Therefore, we conclude that in the natural state glutathione reductase is present in tobacco at levels above those required for maximal operation of the ascorbate-glutathione pathway.  相似文献   

19.
Exposure to nanoparticles (NPs) may cause vascular effects including endothelial dysfunction and foam cell formation, with oxidative stress and inflammation as supposed central mechanisms. We investigated oxidative stress, endothelial dysfunction and lipid accumulation caused by nano-sized carbon black (CB) exposure in cultured human umbilical vein endothelial cells (HUVECs), THP-1 (monocytes) and THP-1 derived macrophages (THP-1a). The proliferation of HUVECs or co-cultures of HUVECs and THP-1 cells were unaffected by CB exposure, whereas there was increased cytotoxicity, assessed by the LDH and WST-1 assays, especially in THP-1 and THP-1a cells. The CB exposure decreased the glutathione (GSH) content in THP-1 and THP-1a cells, whereas GSH was increased in HUVECs. The reactive oxygen species (ROS) production was increased in all cell types after CB exposure. A reduction of the intracellular GSH concentration by buthionine sulfoximine (BSO) pre-treatment further increased the CB-induced ROS production in THP-1 cells and HUVECs. The expression of adhesion molecules ICAM-1 and VCAM-1, but not adhesion of THP-1 to HUVECs or culture dishes, was elevated by CB exposure, whereas these effects were unaffected by BSO pre-treatment. qRT-PCR showed increased VCAM1 expression, but no change in GCLM and HMOX1 expression in CB-exposed HUVECs. Pre-exposure to CB induced lipid accumulation in THP-1a cells, which was not affected by the presence of the antioxidant N-acetylcysteine. In addition, the concentrations of CB to induce lipid accumulation were lower than the concentrations to promote intracellular ROS production in THP-1a cells. In conclusion, exposure to nano-sized CB induced endothelial dysfunction and foam cell formation, which was not dependent on intracellular ROS production.  相似文献   

20.
Hydrogen peroxide (H2O2) is a key reactive oxygen species (ROS) in signal transduction pathways leading to activation of plant defenses against biotic and abiotic stresses. In this study, we investigated the effects of H2O2 pretreatment on aluminum (Al) induced antioxidant responses in root tips of two wheat (Triticum aestivum L.) genotypes, Yangmai‐5 (Al‐sensitive) and Jian‐864 (Al‐tolerant). Al increased accumulation of H2O2 and O2?? leading to more predominant lipid peroxidation, programmed cell death and root elongation inhibition in Yangmai‐5 than in Jian‐864. However, H2O2 pretreatment alleviated Al‐induced deleterious effects in both genotypes. Under Al stress, H2O2 pretreatment increased the activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and monodehydroascorbate reductase, glutathione reductase and glutathione peroxidase as well as the levels of ascorbate and glutathione more significantly in Yangmai‐5 than in Jian‐864. Furthermore, H2O2 pretreatment also increased the total antioxidant capacity evaluated as the 2, 2‐diphenyl‐1‐picrylhydrazyl‐radical scavenging activity and the ferric reducing/antioxidant power more significantly in Yangmai‐5 than in Jian‐864. Therefore, we conclude that H2O2 pretreatment improves wheat Al acclimation during subsequent Al exposure by enhancing the antioxidant defense capacity, which prevents ROS accumulation, and that the enhancement is greater in the Al‐sensitive genotype than in the Al‐tolerant genotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号