首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of nanoparticle size on surface-enhanced Raman scattering (SERS) from silver film over nanospheres substrate is studied. For a range of nanosphere sizes from 430 to 1,500 nm, optimum SERS signal is obtained with a nanosphere size of 1,000 nm at an excitation wavelength of 532 nm. We have clarified the physical origin of this optimization in an unambiguious way as due to resonant plasmonic excitations from 3D finite-difference time-domain simulations, as well as with the assistance of UV-visible reflectance spectrum.  相似文献   

2.

Surface-enhanced Raman scattering (SERS) enhancement factor (EF) is among the major applications of surface plasmon polaritons (SPP’s). In this work, the SERS EF of 1D rectangular and sinusoidal-shaped gold (Au) grating structures has been designed and optimized on Au film using COMSOL multiphysics (5.3a) RF module taking glass as substrate. The 1D grating models are simulated by variation in slit width ranging 200–600 nm while other parameters including periodicity of 700 nm and Au film thickness of 50 nm remained fixed. In order to study the several phenomena including enhanced optical transmission and SERS EF, the transmission and electric field spectra have been obtained from both types of grating structures. In agreement with fundamental plasmonic mode, the slit width of two-thirds of the periodicity found to be optimum for SERS EF. Remarkable value of SERS EF is obtained in the case of a sinusoidal Au grating device (6.4 × 109) which is calculated to be five times that of the rectangular grating (1.2 × 109). These devices are also the fingerprints of molecules, hence find applications in biosensing, pollution control, and chemical and food industry.

  相似文献   

3.

The need for an easy to fabricate perfect and narrowband light absorber in the visible range of electromagnetic (EM) spectrum has always been in demand for many scientific and device applications. Here, we propose a metal-dielectric-metal (MDM) 1-D grating plasmonic structure as a perfect narrow band light absorber in the visible and its application in glucose detection. The proposed structure consists of a 1- D grating of gold on the top of a dielectric layer on a gold film. Optimization for dielectric grating index (n), grating thickness (t), grating width (W), and grating period (P) has been done to improve the performance of plasmonic structure by calculating its quality factor and figure-of-merit (FOM). The optimized plasmonic structure behaves as a perfect narrowband light absorber. The flexibility to work at a specific wavelength is also offered by the proposed structure through an appropriate selection of the geometrical parameters and refractive index of the dielectric grating. The equivalent RC model is used to understand different components of the proposed structure on the optical response. The absorption response of the structure is invariant to the incident angle. Moreover, the calculated absorbance of the proposed plasmonic structure is ~ 100% with a narrow full-width half maxima (FWHM) of ~ 2.8 nm. We have numerically demonstrated a potential application of the proposed MDM absorber as a plasmonic glucose sensor in the visible range with detection sensitivity in the range of 140 to 195 nm/RIU.

  相似文献   

4.

We demonstrate the optical response of metal nanoparticles and their interaction with organic-inorganic perovskite (methyl ammonia lead halide (CH3NH3PbI3)) environment using discrete dipole approximation (DDA) simulation technique. Important optical properties like absorption, scattering, and electric field calculations for metal nanoparticle using different geometry have been analyzed. The metal nanoparticles embedded in the perovskite media strongly support surface plasmon resonances (SPRs). The plasmonic interaction of metal nanoparticles with perovskite matrix is a strong function of MNP’s shape, size, and surrounding environment that can manipulate the optical properties considerably. The cylindrical shape of MNPs embedded in perovskite environment supports the SPR which is highly tunable to subwavelength range of 400–800 nm. Wide range of particle sizes has been selected for Ag, Au, and Al spherical and cylindrical nanostructures surrounded by perovskite matrix for simulation. The chosen hybrid material and anisotropy of structure together make a complex function for resonance shape and width. Among all MNPs, 70-nm spherical silver nanoparticle (NP) and cylindrical Ag NP having diameter of 50 nm and length of 70 nm (aspect ratio 1.4) generate strong electric field intensity that facilitates increased photon absorption. The plasmonic perovskite interaction plays an important role to improve the absorption of photon inside the thin film perovskite environment that may be applicable to photovoltaics and photonics.

  相似文献   

5.

We demonstrate plasmon coupling phenomenon between equivalent (homodimer) and non-equivalent (heterodimer) spherical shape noble metal nanoparticle (Ag, Au and Al). A systematic comparison of surface plasmon resonance (SPR) and extinction properties of various configurations (monomer, homodimer and heterodimer) has been investigated to observe the effect of compositional asymmetry. Numerical simulation has been done by using discrete dipole approximation method to study the optical properties of plasmonically coupled metal nanoparticles (MNPs). Plasmon coupling between similar nanoparticles allows only higher wavelength bonding plasmon mode while both the plasmon modes lower wavelength antibonding mode as well as higher wavelength bonding mode in the case of heterodimer. Au monomer of radius 50 nm shows resonance peak at 518 nm while plasmon coupling between Au-Au homodimer results in a spectral red shift around 609 nm. Au-Ag plasmonic heterodimer (radius 50 nm) reveals two resonant modes corresponding to higher energy antibonding mode (422 nm) as well as lower energy bonding mode (533 nm). Further, we have shown that interparticle edge-to-edge separation is the most significant parameter affecting the surface plasmon resonances of MNPs. As the inter particle separation decreases, resonance wavelength shows red spectral shift which is maximum for the touching condition. It is shown that plasmon coupling is a reliable strategy to tune the SPR.

  相似文献   

6.
Feather cloaks ("kakahu"), particularly those adorned with kiwi feathers, are treasured items or "taonga" to the Māori people of "Aotearoa"/New Zealand. They are considered iconic expression of Māori culture. Despite their status, much of our knowledge of the materials used to construct cloaks, the provenance of cloaks, and the origins of cloak making itself, has been lost. We used ancient DNA methods to recover mitochondrial DNA sequences from 849 feather samples taken from 109 cloaks. We show that almost all (>99%) of the cloaks were constructed using feathers from North Island brown kiwi. Molecular sexing of nuclear DNA recovered from 92 feather cloak samples also revealed that the sex ratio of birds deviated from a ratio of 1:1 observed in reference populations. Additionally, we constructed a database of 185 mitochondrial control region DNA sequences of kiwi feathers comprising samples collected from 26 North Island locations together with data available from the literature. Genetic subdivision (G(ST)), nucleotide subdivision (N(ST)) and Spatial Analysis of Molecular Variants (SAMOVA) analyses revealed high levels of genetic structuring in North Island brown kiwi. Together with sequence data from previously studied ancient and modern kiwi samples, we were able to determine the geographic provenance of 847 cloak feathers from 108 cloaks. A surprising proportion (15%) of cloaks were found to contain feathers from different geographic locations, providing evidence of kiwi trading among Māori tribes or organized hunting trips into other tribal areas. Our data also suggest that the east of the North Island of New Zealand was the most prolific of all kiwi cloak making areas, with over 50% of all cloaks analyzed originating from this region. Similar molecular approaches have the potential to discover a wealth of lost information from artifacts of endemic cultures worldwide.  相似文献   

7.

In the current study, the Si nano column layer via pulsed photo chemical etching with different laser pulse duty cycle 30 and 60% using short laser wavelength (405 nm) and laser intensity (100 mW/cm2) was formed and studied. Two types of Si nano column-based plasmonic Au-NP hot spot layers were synthesized and examined successfully as an efficient SERS layer for the detection of the ultra-low concentration of amoxicillin. Si nano columns exposed a great effect on the performance of the Au-NP hot spot SERS sensor showing a strong dependence on the density of the hot spot gaps within the sensitive layer. Enhancement factor (EF) of the Raman signal improved considerably with increasing the density of the hot spot gaps due to the coupling efficiency among the plasmonic Au-NPs and the molecules of amoxicillin within the hot spot regions. EF increased by about four orders of magnitude with decreasing the laser duty cycles due to the increase of the integrated plasmonic Au-NPs into the Si nano column layer.

  相似文献   

8.
We systematically study the lattice plasmon resonance structures, which are known as core/shell SiO2/Au nanocylinder arrays (NCAs), for high-performance, on-chip plasmonic sensors using the substrate-independent lattice plasmon modes (LPMs). Our finite-difference time-domain simulations reveal that new modes of localized surface plasmon resonances (LSPRs) show up when the height-diameter aspect ratio of the NCAs is increased. The height-induced LSPRs couple with the superstrate diffraction orders to generate the substrate-independent LPMs. Moreover, we show that the high wavelength sensitivity and the narrow linewidth of the substrate-independent LPMs lead to the plasmonic sensors with high figure of merit (FOM) and high signal-to-noise ratio (SNR). In addition, the plasmonic sensors are robust in asymmetric environments for a wide range of working wavelengths. Our further study of both far- and near-field electromagnetic distribution in the NCAs confirms the height-enabled tunability of the plasmonic “hot spots” at the sub-nanoparticle resolution and the large field enhancement in the substrate-independent LPMs, which are responsible for the high FOM and SNR of the plasmonic sensors.  相似文献   

9.
In many applications, a cloaked resonator is highly desired, which can harvest and maximize the energy within the resonator without being detected. This paper presents the resonator cloaking achieved by topology optimization-based inverse design methodology. The resonator cloaking is inversely designed by solving the topology optimization problem with minimizing the ratio of the scattering field energy outside the cloak and the cloaked resonating field energy. By inversely designing the resonator cloaking with relative permittivity 2 for both the resonator and cloak, the topology optimization-based inverse design methodology is demonstrated, where the incident angle sensitivity is considered to derive incident angle insensitive design. Then, the proposed methodology is applied for the cases with resonator and cloak materials chosen from dielectrics with low, moderate and high permittivity, respectively. The derived results demonstrate that the resonator cloaking can be categorized into three types, which are the Fabry-Pérot resonance cloaking, Mie resonance cloaking and hybrid resonance cloaking.  相似文献   

10.
Wang  Jun  Wang  Gang  Liu  Changlong 《Plasmonics (Norwell, Mass.)》2019,14(4):921-928

Two-dimensional Ag/SiO2 nanocomposite gratings of 400 and 600 nm in grating constant are fabricated by etching the SiO2 slabs implanted with Ag ions, and their plasmonic extinction, absorption, and reflection behaviors are investigated. Our results indicate that no scattering light fields can exist near the localized surface plasmon (LSP) resonance wavelength (about 405 nm) of Ag nanoparticles (NPs) due to the intense LSP resonance absorption. Especially, when the gaps between nanocomposite veins have a width close in value to the LSP resonance wavelength of Ag NPs, the local light fields in the grating plane can be slightly enhanced due to an in-phase addition of the incident light fields and the diffractive light fields induced by the gap diffraction, leading to a slight red shift of LSP resonance mode of Ag NPs. Moreover, in the LSP resonance absorption region, although the grating diffraction can still occur, the diffractive light fields are extremely weak, and thus, the local light fields in the grating plane cannot be modified by coherently adding these extremely weak diffractive light fields to the incident light fields. As a result, the LSP resonance mode of Ag NPs will keep its position unchanged even though the grating constant is set to make the first grating order rightly change from evanescent to radiative character.

  相似文献   

11.
The bimetallic core–shell nanoparticles show unique plasmonic properties and their preparations and characterizations are currently under investigation. A new type of Au core–Ag shell (Au@Ag) nanoparticles is prepared by sandwiching the chemically attached Raman reporter molecules (RRMs) and a 12-base-long oligonucleotide between the 13 nm average size core-gold nanoparticles (AuNPs) and 9 nm and 21 nm average size of Ag shell. The synthesized Au@Ag nanoparticles are tested for their surface-enhanced Raman scattering (SERS) performance. It is found that the chemical attachment of the oligonucleotides along with the RRM improved the enhancement in Raman scattering more than one order of the magnitude with the Au@Ag nanoparticles with an average 9-nm shell thickness while the Au@Ag nanoparticles with 21 nm average shell thickness have poor SERS activity. A minimum enhancement factor of 1.0 × 107 is estimated for the SERS active oligonucleotide-mediated Au@Ag nanoparticles. The approach may provide new routes for preparation of highly sensitive new generation of bimetallic core–shell nanoparticles.  相似文献   

12.
In this work, plasmonic Au/SnO2/g‐C3N4 (Au/SO/CN) nanocomposites have been successfully synthesized and applied in the H2 evolution as photocatalysts, which exhibit superior photocatalytic activities and favorable stability without any cocatalyst under visible‐light irradiation. The amount‐optimized 2Au/6SO/CN nanocomposite capable of producing approximately 770 μmol g?1 h?1 H2 gas under λ > 400 nm light illumination far surpasses the H2 gas output of SO/CN (130 μmol g?1), Au/CN (112 μmol g?1 h?1), and CN (11 μmol g?1 h?1) as a contrast. In addition, the photocatalytic activity of 2Au/6SO/CN maintains unchanged for 5 runs in 5 h. The enhanced photoactivity for H2 evolution is attributed to the prominently promoted photogenerated charge separation via the excited electron transfer from plasmonic Au (≈520 nm) and CN (470 nm > λ > 400 nm) to SO, as indicated by the surface photovoltage spectra, photoelectrochemical IV curves, electrochemical impedance spectra, examination of formed hydroxyl radicals, and photocurrent action spectra. Moreover, the Kelvin probe test indicates that the newly aligned conduction band of SO in the fabricated 2Au/6SO/CN is indispensable to assist developing a proper energy platform for the photocatalytic H2 evolution. This work distinctly provides a feasible strategy to synthesize highly efficient plasmonic‐assisted CN‐based photocatalysts utilized for solar fuel production.  相似文献   

13.
We have theoretically studied and optimized the field enhancement and temporal response of single and coupled bimetal Ag/Au core–shell nanoparticles (NPs) with a diameter of 160 nm and compared the results to pure Ag and Au NPs. Very high-field enhancements with an amplitude reaching 100 (with respect to the laser field centered at 800 nm) are found at the center of a 2-nm gap between Ag/Au core–shell dimers. We have explored the excitation of the bimetal core–shell particles by Fourier transform-limited few-cycle optical pulses and identified conditions for an ultrafast plasmonic decay on the order of the excitation pulse duration. The high-field enhancement and ultrafast decay makes bimetal core–shell particles interesting candidates for applications such as the generation of ultrashort extreme ultraviolet radiation pulses via nanoplasmonic field enhancement. Moreover, in first experimental studies, we synthesized small bimetal Ag/Au core–shell NPs and compared their optical response with pure Au and Ag NPs and numerical results.  相似文献   

14.
Hong  John  Kim  Byung-Sung  Hou  Bo  Cho  Yuljae  Lee  Sang Hyo  Pak  Sangyeon  Morris  Stephen M.  Sohn  Jung Inn  Cha  SeungNam 《Plasmonics (Norwell, Mass.)》2020,15(4):1007-1013

To improve quantum dot solar cell performance, it is crucial to make efficient use of the available incident sunlight to ensure that the absorption is maximized. The ability of metal nanoparticles to concentrate incident sunlight via plasmon resonance can enhance the overall absorption of photovoltaic cells due to the strong confinement that results from near-field coupling or far-field scattering plasmonic effects. Therefore, to simultaneously and synergistically utilize both plasmonic effects, the placement of different plasmonic nanostructures at the appropriate locations in the device structure is also critical. Here, we introduce two different plasmonic nanoparticles, Au and Ag, to a colloidal PbS quantum dot heterojunction at the top and bottom interface of the electrodes for further improvement of the absorption in the visible and near-infrared spectral regions. The Ag nanoparticles exhibit strong scattering whereas the Au nanoparticles exhibit an intense optical effect in the wavelength region where the absorption of light of the PbS quantum dot is strongest. It is found that these dual-plasmon layers provide significantly improved short-circuit current and power conversion efficiency without any form of trade-off in terms of the fill factor and open-circuit voltage, which may result from the indirect contact between the plasmonic nanoparticles and colloidal quantum dot films.

  相似文献   

15.
In this paper, we propose a design for surface plasmon polariton band gap (SPPBG)-enabled plasmonic Mach–Zehnder interferometer (PMZI) comprising of array of silver nanorods embedded upright into silicon on insulator (SOI) substrate and analyze its potential in sensing, intended for cancer therapy. Periodic arrangement of nanorods embedded into SOI substrate grants strong spatial confinement and assist waveguidance to the propagating plasmon mode due to the SPPBG effect. This arrayed system triggers local field enhancement promoting sensing proficiency of the device and is assessed in terms of wavelength and phase shift. Proposed design of SPPBG-enabled PMZI sensor is successfully employed for detection and classification of various cancerous cells. The structural parameters of PMZI are optimized in compliance with the plasmonic band gap in the range of 400–800 nm yielding exceptionally high sensitivity at input wavelength of 633 nm. Volumetric analysis of the analyte reveals that very small analyte volume of the order of 10?15 cc is sufficient to yield significant phase shift. Phase shift obtained for the breast adenocarcinoma and blood cancer cell lines are 1.2357radian and 0.3351radian, respectively, which read very high value of phase shifts to identify extremely small changes in refractive index of the analyte. Figure of merit calculated thereby expose impressive device performance outdoing preceding plasmonic sensors leading to validation of proposed ultra-compact-sensitive PMZI design.  相似文献   

16.
Scattering efficiencies of Ag–Cu, Ag–Au, and Au–Cu alloy nanoparticles are studied based on Mie theory for their possible applications in solar cells. The effect of size (radius), surrounding medium, and alloy composition on the scattering efficiency at the localized surface plasmon resonance (LSPR) wavelengths has been reported. In the alloy nanoparticles of Ag1?x Cu x , Au1?x Cu x and Ag1?x Au x ; the scattering efficiency gets red-shifted with increase in x. Moreover, the scattering efficiency enhancement can be tuned and controlled with both the alloy composition and the surrounding medium refractive index. A linear relationship which is in good agreement to the experimental observations between the scattering efficiency and metal composition in the alloys are found. The effect of nanoparticle size and LSPR wavelength (scattering peak position) on the full width half maxima and scattering efficiency has also been studied. Comparison of Au–Ag, Au–Cu, and Ag–Cu alloy nanoparticles with 50-nm radii shows the optical response of Ag–Cu alloy nanoparticle with wide bandwidth in the visible region of the electromagnetic spectrum making them suitable for plasmonic solar cells. Further, the comparison of Ag–Cu alloy and core@shell nanoparticles of similar size and surrounding medium shows that Cu@Ag nanoparticle exhibits high scattering efficiency with nearly the same bandwidth.  相似文献   

17.

Light control capability of photonic crystal fiber (PCF) is a unique feature which can be applied to improve biosensing and plasmonic performance. Here, we reported alphabetic-core microstructure fiber-based plasmonic biosensor. Three different alphabetic R-, M-, and S-shaped cores of PCF-based plasmonic microstructures show controllable light propagation to enhance biosensor sensitivity and resolution. The light-guiding properties and sensing performance are investigated numerically using the finite element method (FEM). The proposed R-shaped core (RSC), M-shaped core (MSC), and S-shaped core (SSC) PCF-based plasmonic sensors show the maximum wavelength and amplitude sensitivities of 12,000, 11,000, 10,000 nm/RIU and 478, 533, and 933 RIU−1, respectively, in the refractive index (RI) range of 1.33 to 1.40. The sensors also exhibit promising wavelength resolution of 8.33 × 10−6, 9.09 × 10−6, and 1.0 × 10−6 RIU, with figure of merit (FOM) of 108, 143, and 217 RIU−1 for RSC, MSC, and SSC PCFs, respectively. The tunable sensing performance is also observed in design structures due to controllable light traveling path and their interaction with analytes. The proposed alphabetic-core PCF SPR sensors would be a promising candidate for the application of light controlling, trapping in microscale environment, and biosensing.

  相似文献   

18.

In this paper, the simultaneous switching and sensing capabilities of a compact plasmonic structure based on a conventional rectangular hole in a silver film are proposed and investigated. The proposed structure has ultrahigh sensitivity up to 3000 nm/RIU and high figure of merit of 170 RIU−1. Also, the simulation results show the potential of the presented refractive index sensor to detect malaria infection, cancer cells, bacillus bacteria, and solution of glucose in water. Simultaneously, by changing the incident lightwave polarization, the structure behaves like a plasmonic switch, which has high extinction ratios of 15.81, 31.20, and 25.03 dB at three telecommunication wavelengths of 850, 1310, and 1550 nm, respectively. The ultrafast response time of 20 fs is achieved for the wideband application of the switching capability at the wavelength range of 1056 to 1765 nm. Moreover, the equivalent circuit model and transmission (ABCD) matrix methods are derived to validate the simulated results. Simple design, good agreement between the numerical and analytical results, biomedical applications, ultrahigh sensitivity, and ultrafast performance of the proposed structure help this idea to open up paths for design and implementation of other multi-application plasmonic devices in near-infrared region. To the best of our knowledge, the mentioned analytical methods have not been studied former at near-infrared wavelengths. Therefore, the achievements could pave the way for verifying the simulation results of plasmonic nanostructures in future investigations.

  相似文献   

19.

Plasmonic interaction of nanoparticles located in close proximity, embedded in breast tissue, is simulated for estimating the optical characteristics like optical absorption cross-section, plasmonic wavelength as well as full-width half maxima (FWHM). The computations are done for the monomers, homodimers, and heterodimers of spherical and rod-shaped gold nanoparticles considering various interparticle spacings for gold nanospheres and the interparticle spacing as well as the orientation for gold nanorods (GNRs). The results indicate that for the spherical dimer, with the change in interparticle spacing from 1 to 20 nm, the peak absorption cross-section decreases by 43%. Whereas for the GNRs, the absorption cross-section increases/decreases, within 9–18%, depending on the homodimer or heterodimer configuration. Furthermore, secondary peaks for the absorption cross-section are obtained within wavelengths of 630–940 nm due to antibonding modes for GNR heterodimers. For GNR heterodimer located end-to-end, this secondary peak for the absorption cross-section appears at 780 nm irrespective of interparticle spacing within 1–5 nm. The absorption coefficient is considerably dependent on the configuration and proximity of GNRs located within the tissue. While FWHM is not significantly influenced by GNRs configuration and interparticle spacing. For interparticle spacing from 1 to 20 nm, the plasmonic wavelength shifts by 38 nm for the spherical dimer and by 35–86 nm for various GNR dimers. The findings of this study are useful for plasmonic photothermal therapeutics as the heat generation is governed by the resulting absorption cross-section due to plasmonic coupling of the closely spaced and different orientations of the nanoparticles.

  相似文献   

20.

We demonstrate a broadband absorber using random structures on refractory plasmonic material. The random microstructure is fabricated by femtosecond laser on tungsten and characterized with surface roughness which described by root mean square (RMS) and correlation length. Results show that the absorption efficiency of random microstructure with RMS of 0.8 μm and correlation length of 0.55 μm is over 90 % in the wavelength range from 200 to 1100 nm. However, the sample with surface structure RMS of 0.08 μm has much lower absorption (less than 70 % for λ > 600 nm). Numerical simulations agree well with the experimental results and illustrate that the structure with 0.8-μm RMS and 0.55-μm correlation length has the cut-off wavelength of 2400 nm which prevents mid-infrared emission. The possibility of realizing broadband absorption by using random structures presents a flexible and efficient way for solar cell, thermophotovoltaics, and energy harvesting.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号