首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In view of the recent isolation of stable oil bodies as well as a unique oleosin from lily pollen, this study examined whether other minor proteins were present in this lipid-storage organelle. Immunological cross-recognition using antibodies against three minor oil-body proteins from sesame suggested that a putative caleosin was specifically detected in the oil-body fraction of pollen extract. A cDNA fragment encoding this putative pollen caleosin, obtained by PCR cloning, was confirmed by immunodetection and MALDI-MS analyses of the recombinant protein over-expressed in Escherichia coli and the native form. Caleosin in lily pollen oil bodies seemed to be a unique isoform distinct from that in lily seed oil bodies.  相似文献   

2.
An in vitro system was established to examine the targeting of proteins to maturing seed oil bodies. Oleosin, the most abundant structural protein, and caleosin, a newly identified minor constituent in seed oil bodies, were translated in a reticulocyte lysate system and simultaneously incubated with artificial oil emulsions composed of triacylglycerol and phospholipid. The results suggest that oil body proteins could spontaneously target to artificial oil emulsions in a co-translational mode. Incorporation of oleosin to artificial oil emulsions extensively protected a fragment of approximately 8 kDa from proteinase K digestion. In a competition experiment, in vitro translated caleosin and oleosin preferentially target to artificial oil emulsions instead of microsomal membranes. In oil emulsions with neutral phospholipids, relatively low protein targeting efficiency was observed. The targeting efficiency was substantially elevated when negatively charged phospholipids were supplemented to oil emulsions to mimic the native phospholipid composition of oil bodies. Mutated caleosin lacking various structural domains or subdomains was examined for its in vitro targeting efficiency. The results indicate that the subdomain comprising the proline knot motif is crucial for caleosin targeting to oil bodies. A model of direct targeting of oil-body proteins to maturing oil bodies is proposed.  相似文献   

3.
Plant seed oil bodies comprise a matrix of triacylglycerols surrounded by a monolayer of phospholipids embedded with abundant oleosins and some minor proteins. Three minor proteins, temporarily termed Sops 1-3, have been identified in sesame oil bodies. A cDNA sequence of Sop1 was obtained by PCR cloning using degenerate primers derived from two partial amino acid sequences, and subsequently confirmed via immunological recognition of its over-expressed protein in Escherichia coli. Alignment with four published homologous sequences suggests Sop1 as a putative calcium-binding protein. Immunological cross-recognition implies that this protein, tentatively named caleosin, exists in diverse seed oil bodies. Caleosin migrated faster in SDS-PAGE when incubated with Ca2+. A single copy of caleosin gene was found in sesame genome based on Southern hybridization. Northern hybridization revealed that both caleosin and oleosin genes were concurrently transcribed in maturing seeds where oil bodies are actively assembled. Hydropathy plot and secondary structure analysis suggest that caleosin comprises three structural domains, i.e., an N-terminal hydrophilic calcium-binding domain, a central hydrophobic anchoring domain, and a C-terminal hydrophilic phosphorylation domain. Compared with oleosin, a conserved proline knot-like motif is located in the central hydrophobic domain of caleosin and assumed to involve in protein assembly onto oil bodies.  相似文献   

4.
Stable oil bodies were purified from mature lily (Lilium longiflorum Thunb.) pollen. The integrity of pollen oil bodies was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Immunodetection revealed that a major protein of 18 kDa was exclusively present in pollen oil bodies and massively accumulated in late stages of pollen maturation. According to mass spectrometric analyses, this oil body protein possessed a tryptic fragment of 13 residues matching that of a theoretical rice oleosin. A complete cDNA fragment encoding this putative oleosin was obtained by PCR cloning with primers derived from its known 13-residue sequence. Sequence analysis as well as immunological non-cross-reactivity suggests that this pollen oleosin represents a distinct class in comparison with oleosins found in seed oil bodies and tapetum. In pollen cells observed by electron microscopy, oil bodies were presumably surrounded by tubular membrane structures, and encapsulated in the vacuoles after germination. It seems that pollen oil bodies are mobilized via a different route from that of glyoxysomal mobilization of seed oil bodies after germination.  相似文献   

5.
Seed oil bodies comprise a triacylglycerol matrix shielded by a monolayer of phospholipids and proteins. These surface proteins include an abundant structural protein, oleosin, and at least two minor protein classes termed caleosin and steroleosin. Two steroleosin isoforms (41 and 39 kDa), one caleosin (27 kDa), and two oleosin isoforms (17 and 15 kDa) have been identified in oil bodies isolated from sesame seeds. The signal peptides responsible for targeting of these proteins to oil bodies have not been experimentally determined. Hydropathy analyses indicate that the hydrophobic domain putatively responsible for oil-body anchoring is located in the N-terminal region of steroleosin, but in the central region of caleosin or oleosin. Direct amino acid sequencing showed that both steroleosin isoforms possessed a free methionine residue at their N-termini while caleosin and oleosin isoforms were N-terminally blocked. Mass spectrometry analyses revealed that N-termini of both caleosin and 17 kDa oleosin were acetylated after the removal of the first methionine. In addition, deamidation was observed at a glutamine residue in the N-terminal region of 17 kDa oleosin.  相似文献   

6.
Oil bodies are lipid storage organelles which have been analyzed biochemically due to the economic importance of oil seeds. Although oil bodies are structurally simple, the mechanisms involved in their formation and degradation remain controversial. At present, only two proteins associated with oil bodies have been described, oleosin and caleosin. Oleosin is thought to be important for oil body stabilization in the cytosol, although neither the structure nor the function of oleosin has been fully elucidated. Even less is known about caleosin, which has only recently been described [Chen et al. (1999) Plant Cell Physiol 40: 1079–1086; Næsted et al. (2000) Plant Mol Biol 44: 463–476]. Caleosin and caleosin-like proteins are not unique to oil bodies and are associated with an endoplasmatic reticulum subdomain in some cell types. Here we review the synthesis and degradation of oil bodies as they relate to structural and functional aspects of oleosin and caleosin.  相似文献   

7.
Oil bodies formed in Auxenochlorella protothecoides induced during limited nutrition had a coating of caleosin. The total lipid content obtained from A. protothecoides in unstressed cultures (first week) was ~210 mg/g compared to the 231 mg/g obtained in the third week (nutrient limited) and 290 mg/g obtained in the fourth week (nutrient limited). The proportion of total saturated fatty acids increased from 28 to 46 %, whereas that of total polyunsaturated fatty acids decreased from 52 to 35 %. The expression levels of the 28 kDa caleosin protein in A. protothecoides rose to a maximum up to 4 weeks; immunolocalization studies showed that caleosin was predominantly associated with the membranes of oil bodies.  相似文献   

8.
Thin-layer chromatography analysis revealed that the contents stored in oil bodies isolated from jelly fig (Ficus awkeotsang Makino) achenes were mainly neutral lipids (>90% triacylglycerols and approximately 5% diacylglycerols). Fatty acids released from the neutral lipids of achene oil bodies were highly unsaturated (62.65% alpha-linolenic acid, 18.24% linoleic acid, and 10.62% oleic acid). The integrity of isolated oil bodies was presumably maintained via electronegative repulsion and steric hindrance provided by their surface proteins. Immunological cross-recognition using antibodies against sesame oil-body proteins indicated that two oleosin isoforms and one caleosin were present in these oil bodies. MALDI-MS analyses confirmed that the three full-length cDNA fragments obtained by PCR cloning from maturing achenes encoded the two jelly fig oleosin isoforms and one caleosin identified by immunological screening.  相似文献   

9.
It has been demonstrated that caleosin alone is sufficient to stabilize artificial oil bodies. A series of recombinant caleosins, mutated with 3, 5, 8, 11, 13, 15, and 17 extra Lys residues and over‐expressed in Escherichia coli, were used as carrier proteins to render biotin as a hapten on the surface of artificial oil bodies for antibody production. Biotinylation levels of the recombinant caleosins were step‐wisely elevated as the number of extra Lys residues increased, and the biotinylated Lys residues were identified by mass spectrometric analysis. Polyclonal antibodies against biotin were successfully generated in rats injected with artificial oil bodies constituted with each of the biotinylated caleosins. Moreover, those generated via the biotinylated caleosins with eight or more extra Lys residues no longer recognized caleosin. It appears that engineered Lys‐rich caleosins are suitable carrier proteins for the production of antibodies against small molecules. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

10.
Encapsulation of hydrophobic agents with nanocarriers is challenging. Therefore, we have sought to use nanoscale artificial oil bodies (NOBs) as an alternative delivery carrier. To constitute NOBs, caleosin (Cal), a structural protein of plant seed oil bodies, was first fused with ZH2 (Cal-ZH2). ZH2 is a bivalent anti-HER2/neu affibody with a high affinity towards the HER2/neu receptor. After overproduction in Escherichia coli, insoluble Cal-ZH2 was isolated and used to assemble NOBs in one step. Consequently, resulting NOBs had a zeta potential around −49 mV and ranged in size from 150 to 200 nm. Upon loading with a hydrophobic fluorescence dye, NOBs were found to be selectively internalized into HER2/neu-positive tumor cells. Further analyses showed that more than 90% cells were invaded by dye-loaded NOBs and the cargo dye was released in cells with time. In addition, the in vitro assay revealed the release of the dye from NOBs in a slow and prolong manner. Overall, these results indicate the potential of Cal-based NOBs as a delivery vehicle.  相似文献   

11.
This work reports the successful recombinant expression of human statherin in Escherichia coli, its purification and in vitro phosphorylation. Human statherin is a 43-residue peptide, secreted by parotid and submandibular glands and phosphorylated on serine 2 and 3. The codon-optimized statherin gene was synthesized and cloned into commercial pTYB11 plasmid to allow expression of statherin as a fusion protein with intein containing a chitin-binding domain. The plasmid was transformed into E. coli strains and cultured in Luria–Bertani medium, which gave productivity of soluble statherin fusion protein of up to 47 mg per liter of cell culture, while 112 mg of fusion protein were in the form of inclusion bodies. No significant refolded target protein was obtained from inclusion bodies. The amount of r-h-statherin purified by RP–HPLC corresponded to 0.6 mg per liter of cell culture. Attenuated total reflection-Fourier transform infrared spectroscopy experiments performed on human statherin isolated from saliva and r-h-statherin assessed the correct folding of the recombinant peptide. Recombinant statherin was transformed into the diphosphorylated biologically active form by in vitro phosphorylation using the Golgi-enriched fraction of pig parotid gland containing the Golgi-casein kinase.  相似文献   

12.
Oil bodies (OBs) are the intracellular particles derived from oilseeds. These OBs store lipids as a carbon resource, and have been exploited for a variety of industrial applications including biofuels. Oleosin and caleosin are the common OB structural proteins which are enabling biotechnological enhancement of oil content and OB-based pharmaceutical formations via stabilizing OBs. Although the draft whole genome sequence information for Ricinus communis L. (castor bean) and Linum usitatissimum L. (flax), important oil seed plants, is available in public database, OB-structural proteins in these plants are poorly indentified. Therefore, in this study, we performed a comprehensive bioinformatic analysis including analysis of the genome sequence, conserved domains and phylogenetic relationships to identify OB structural proteins in castor bean and flax genomes. Using comprehensive analysis, we have identified 6 and 15 OB-structural proteins from castor bean and flax, respectively. A complete overview of this gene family in castor bean and flax is presented, including the gene structures, phylogeny and conserved motifs, resulting in the presence of central hydrophobic regions with proline knot motif, providing an evolutionary proof that this central hydrophobic region had evolved from duplications in the primitive eukaryotes. In addition, expression analysis of L-oleosin and caleosin genes using quantitative real-time PCR demonstrated that seed contained their maximum expression, except that RcCLO-1 expressed maximum in cotyledon. Thus, our comparative genomics analysis of oleosin and caleosin genes and their putatively encoded proteins in two non-model plant species provides insights into the prospective usage of gene resources for improving OB-stability.  相似文献   

13.
H Tai  J G Jaworski 《Plant physiology》1993,103(4):1361-1367
A cDNA clone encoding spinach (Spinacia oleracea) 3-ketoacyl-acyl carrier protein synthase III (KAS III), which catalyzes the initial condensing reaction in fatty acid biosynthesis, was isolated. Based on the amino acid sequence of tryptic digests of purified spinach KAS III, degenerate polymerase chain reaction (PCR) primers were designed and used to amplify a 612-bp fragment from first-strand cDNA of spinach leaf RNA. A root cDNA library was probed with the PCR fragment, and a 1920-bp clone was isolated. Its deduced amino acid sequence matched the sequences of the tryptic digests obtained from the purified KAS III. Northern analysis confirmed that it was expressed in both leaf and root. The clone contained a 1218-bp open reading frame coding for 405 amino acids. The identity of the clone was confirmed by expression in Escherichia coli BL 21 as a glutathione S-transferase fusion protein. The deduced amino acid sequence was 48 and 45% identical with the putative KAS III of Porphyra umbilicalis and KAS III of E. coli, respectively. It also had a strong local homology to the plant chalcone synthases but had little homology with other KAS isoforms from plants, bacteria, or animals.  相似文献   

14.
Liu Z  Li X  Chi Z  Wang L  Li J  Wang X 《Antonie van Leeuwenhoek》2008,94(2):245-255
The extracellular lipase structural gene was isolated from cDNA of Aureobasidium pullulans HN2-3 by using SMARTTM RACE cDNA amplification kit. The gene had an open reading frame of 1245 bp long encoding a lipase. The coding region of the gene was interrupted by only one intron (55 bp). It encodes 414 amino acid residues of a protein with a putative signal peptide of 26 amino acids. The protein sequence deduced from the extracellular lipase structural gene contained the lipase consensus sequence (G-X-S-X-G) and three conserved putative N-glycosylation sites. According to the phylogenetic tree of the lipases, the lipase from A. pullulans was closely related to that from Aspergillus fumigatus (XP_750543) and Neosartorya fischeri (XP_001257768) and the identities were 50% and 52%, respectively. The mature peptide encoding cDNA was subcloned into pET-24a (+) expression vector. The recombinant plasmid was expressed in Escherichia coli BL21(DE3). The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 47 kDa was found. Enzyme activity assay verified the recombinant protein as a lipase. A maximum activity of 0.96 U/mg was obtained from cellular extract of E. coli BL21(DE3) harboring pET-24a(+)LIP1. Optimal pH and temperature of the crude recombinant lipase were 8.0 and 35 °C, respectively and the crude recombinant lipase had the highest hydrolytic activity towards peanut oil.  相似文献   

15.
Lipid bodies store oils in the form of triacylglycerols. Oleosin, caleosin and steroleosin are unique proteins localized on the surface of lipid bodies in seed plants. This study has identified genes encoding lipid body proteins oleosin, caleosin and steroleosin in the genomes of five plants: Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Selaginella moellendorffii and Physcomitrella patens. The protein sequence alignment indicated that each oleosin protein contains a highly-conserved proline knot motif, and proline knob motif is well conserved in steroleosin proteins, while caleosin proteins possess the Dx[D/N]xDG-containing calcium-binding motifs. The identification of motifs (proline knot and knob) and conserved amino acids at active site was further supported by the sequence logos. The phylogenetic analysis revealed the presence of magnoliophyte-and bryophyte-specific subgroups. We analyzed the public microarray data for expression of oleosin, caleosin and steroleosin in Arabidopsis and rice during the vegetative and reproductive stages, or under abiotic stresses. Our results indicated that genes encoding oleosin, caleosin and steroleosin proteins were expressed predominantly in plant seeds. This work may facilitate better understanding of the members of lipid-body-membrane proteins in diverse organisms and their gene expression in model plants Arabidopsis and rice.  相似文献   

16.
To elevate its bioavailability via oral administration, cyclosporine A (CsA), a hydrophobic drug, was either incorporated into olive oil directly or encapsulated in artificial oil bodies (AOBs) constituted with olive oil and phospholipid in the presence or absence of recombinant caleosin purified from Escherichia coli. The bioavailabilities of CsA in these formulations were assessed in Wistar rats in comparison with the commercial formulation, Sandimmun Neoral. Among these tests, CsA-loaded AOBs stabilized by the recombinant caleosin exhibited better bioavailability than the commercial formulation and possessed the highest maximum whole blood concentration (C(max)), 1247.4 +/- 106.8 ng/mL, in the experimental animals 4.3 +/- 0.7 h (t(max)) after oral administration. C(max) and the area under the plasma concentration-time curve (AUC(0-24)) were individually increased by 50.8% and 71.3% in the rats fed with caleosin-stabilized AOBs when compared with those fed with the reference Sandimmun Neoral. The results suggest that constitution of AOBs stabilized by caleosin may be a suitable technique to encapsulate hydrophobic drugs for oral administration.  相似文献   

17.
We have successfully created polyoleosins by joining multiple oleosin units in tandem head‐to‐tail fusions. Constructs encoding recombinant proteins of 1, 3 and 6 oleosin repeats were purposely expressed both in planta and in Escherichia coli. Recombinant polyoleosins accumulated in the seed oil bodies of transgenic plants and in the inclusion bodies of E. coli. Although polyoleosin was estimated to only accumulate to <2% of the total oil body protein in planta, their presence increased the freezing tolerance of imbibed seeds as well as emulsion stability and structural integrity of purified oil bodies; these increases were greater with increasing oleosin repeat number. Interestingly, the hexameric form of polyoleosin also led to an observable delay in germination which could be overcome with the addition of external sucrose. Prokaryotically produced polyoleosin was purified and used to generate artificial oil bodies and the increase in structural integrity of artificial oil bodies‐containing polyoleosin was found to mimic those produced in planta. We describe here the construction of polyoleosins, their purification from E. coli, and properties imparted on seeds as well as native and artificial oil bodies. A putative mechanism to account for these properties is also proposed.  相似文献   

18.
Caleosin is a Ca(2+)-binding oil-body surface protein. To assess its role in the degradation of oil-bodies, two independent insertion mutants lacking caleosin were studied. Both mutants demonstrated significant delay of breakdown of the 20:1 storage lipid at 48 and 60 h of germination. Additionally, although germination rates for seeds were not affected by the mutations, mutant seedlings grew more slowly than wild type when measured at 48 h of germination, a defect that was corrected with continued growth for 72 and 96 h in the light. After 48 h of germination, wild-type central vacuoles had smooth contours and demonstrated internalization of oil bodies and of membrane containing alpha- and delta-tonoplast intrinsic proteins (TIPs), markers for protein storage vacuoles. In contrast, mutant central vacuoles had distorted limiting membranes displaying domains with clumps of the two TIPs, and they contained fewer oil bodies. Thus, during germination caleosin plays a role in the degradation of storage lipid in oil bodies. Its role involves both the normal modification of storage vacuole membrane and the interaction of oil bodies with vacuoles. The results indicate that interaction of oil bodies with vacuoles is one mechanism that contributes to the degradation of storage lipid.  相似文献   

19.
This paper reports the expression of an artificial functional polypeptide in bacteria. The gene of a designed 24-residue DDT-binding polypeptide (DBP) was inserted between the BamHI and PstI cleavage sites of plasmid pUR291. The hybrid plasmid, pUR291-DBP, was cloned in Escherichia coli JM109. After induction by isopropyl-beta-D-thiogalactopyranoside a fusion protein was expressed in which DBP was linked to the COOH-terminus of beta-galactosidase. DBP, which is stable to trypsin, was obtained by tryptic digestion of the fusion protein and subsequent fractionation of the tryptic peptides by reversed-phase h.p.l.c. Recombinant and chemically synthesized DBP showed identical chromatographic properties, amino acid composition, and chymotryptic digestion patterns. Both the beta-galactosidase-DBP fusion and isolated recombinant DBP bound DDT. The fusion protein was 25 times as potent as the designed 24-residue DBP in activating a cytochrome P-450 model system using equimolar catalytic amounts of the two proteins.  相似文献   

20.
Seed oil bodies (OBs) are intracellular particles that store lipids. In maize embryos, the oil bodies are accumulated mainly in the scutellum. Oil bodies were purified from the scutellum of germinating maize seeds and the associated proteins were extracted and subjected to 2-DE analysis followed by LC-MS/MS for protein identification. In addition to the previously known oil body proteins oleosin, caleosin and steroleosin, new proteins were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号