首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

A five-band polarization-insensitive perfect metamaterial absorber (PMA) is reported in this paper for THz detection and sensing applications. The proposed absorber is constructed using interconnected circular ring elements enclosed by a square loop. The ring elements are interconnected using short strip lines which increases the electrical length to offer resonance at the lower frequencies of the THz regime without increasing the electrical length. The proposed absorber has a footprint of 0.12 λeff?×?0.12 λeff where λeff is the effective wavelength calculated at the lowest operating frequency. The absorber provides 92%, 84%, 90%, 100%, and 100% absorption at 0.24, 0.56, 0.65, 0.82, and 0.95 THz, respectively. The proposed structure offers structural symmetry, and hence, it is polarization-insensitive. The proposed five-band absorber has good angular stability consistent with many research works reported in the literature and has a small frequency ratio of 1:2.3:2.7:3.4:3.9. The proposed absorber can be used as a permittivity sensor and its sensitivity is estimated to vary from 5.8 GHz/permittivity unit (PU) to 23.56 GHz/PU.

  相似文献   

2.
Sun  Li-Ping  Zhai  Xiang  Lin  Qi  Liu  Gui-Dong  Wang  Ling-Ling 《Plasmonics (Norwell, Mass.)》2018,13(3):1043-1048
Plasmonics - We propose the idea of a tunable nearly perfect absorber based on graphene metamaterial consisting of a periodically arranged graphene ribbons (bright mode) and the inverse slots in...  相似文献   

3.

In this article, we demonstrate a tunable ultra-broadband metamaterial absorber (TUMA) in terahertz (THz) band which is based on the multilayered structure composed of an Au reflective layer, polyimide dielectric layers, and vanadium dioxide (VO2) periodic structures, respectively. We gain the tunable absorption spectra because of the room temperature phased-changed character of VO2. The relative bandwidth reaches to 81.2% and the absorption rate is over 90% at the frequency range of 1.63–3.86 THz when the temperature (t1) is 350 K, but when t1 = 300 K, the presented absorber is acted as a reflector whose absorption is small besides the frequency points of 9.75 THz and 9.81 THz. For the sake of comprehending the physical mechanism in-depth, the electric field (E-field) diagrams, the surface current distributions and the power loss density (PLD) of the TUMA are investigated. The influences of structural arguments and incident angle (θ) on the absorption are also analyzed. The emulated consequences show that the absorption spectrum can be regulated by changing structural parameters and incident angle and the tunable absorption regions can be obtained by altering the external temperature.

  相似文献   

4.
Plasmonics - In order to achieve nonreciprocal absorption, we design a metamaterial slab made of arrays of tilted metal layers. Through studying the extraordinary material dispersion, we derive the...  相似文献   

5.
Wang  Jing  Hu  Chengpeng  Tian  Qi  Yu  Wenxiu  Tian  Hao  Li  Li  Liu  Jianlong  Zhou  Zhongxiang 《Plasmonics (Norwell, Mass.)》2020,15(6):1943-1947

Ensuring a good trade-off between high-quality factor (Q-factor) and polarization independency is a key challenge for designing practicable terahertz metamaterial devices. We propose a symmetric composite aluminum-structured metamaterial absorber to achieve high Q-factor beyond 80 and near-unity absorbance of arbitrary polarization waves in the terahertz regime. Ultrahigh Q-factor reaches 84, and polarization-independent absorption is as high as 99% for resonant frequency tuning from 7.58 to 8.97 THz, covering 14% of the standard THz gap. The geometric effect of the symmetric sublattice on resonant frequency tuning is analyzed. The large Q-factor and strong absorption by oblique incidence is discussed. Designed high-Q metamaterial perfect absorber has various applications, including terahertz hyperspectral imaging, filtering, and sensing.

  相似文献   

6.

A tunable multi-band metamaterial perfect absorber is designed in this paper. The absorber made of a composite array of gold elliptical and circular disks on a thick metallic substrate, separated by a thin dielectric spacer. The absorptivity and the field enhancement of proposed structures are numerically investigated by the finite difference time domain method. Three absorption peaks (1.15, 1.55, and 2.05 μm) with the maximal absorption of 99.2, 99.7, and 97.3% have been achieved, respectively. By altering the dimensions of associated geometric parameters in the structure, three resonance wavelengths can be tuned individually. Physical mechanism of the multi-band absorption is construed as the resonance of magnetic polaritons. And the absorber exhibits the characteristics that are insensitive to the polarization angle due to its symmetry. The research results can have access to selective control of thermal radiation and the design of multi-band photodetectors.

  相似文献   

7.
High absorption efficiency is particularly desirable for various microtechnological applications. In this paper, a nearly perfect terahertz absorber for transverse magnetic (TM) polarization based on T-shaped InSb array is proposed and numerically investigated. Incident wave at the Fabry-Perot resonant frequency can be totally absorbed into the narrow grooves between the two adjacent T-shaped InSb arms. The absorption mechanism is theoretically and numerically studied by using the Fabry-Perot model and the finite element method (FEM), respectively. It is found that the proposed absorber has large angle tolerance. Moreover, the absorption peak can be controlled by varying the temperature. Furthermore, a new absorption peak will emerge while breaking the symmetry of the T-shaped InSb array. This tunable and angle-independent THz perfect absorber may find important applications in THz devices such as microbolometers, coherent thermal emitters, solar cells, photo detectors, and sensors.  相似文献   

8.
Plasmonics - A highly sensitive absorption-based sensor based on folded split-ring metamaterial graphene resonators (FSRMGRs) is designed, and its biomedical application in terahertz (THz) spectrum...  相似文献   

9.
He  Yu  Wu  Qiannan  Yan  Shinong 《Plasmonics (Norwell, Mass.)》2019,14(6):1303-1310
Plasmonics - In this letter, we design a terahertz (THz) multi-band absorber comprised of four square open/closed loops and a ring wall resonant metamaterial with a high absorption rate for TE and...  相似文献   

10.
Terahertz (THz) absorber with dynamically tunable bandwidth possesses huge application value in the fields of switches, sensors, and THz detection. However, the perfect absorbers based on photonic crystals and metamaterials are not intelligent enough to capture the electromagnetic wave in a tunable way. In this paper, we utilized only patterned graphene to tune the absorption positions and the bandwidth in the terahertz regime. More distinguished than some dynamic absorbers proposed before, the performances with peak frequency relative tuning range of 68 % and nearly unity absorbance are obtained by a single cross-shaped graphene layer. Additionally, the working bandwidth can be broadened with stacked structured graphene. The almost perfect absorption shifted from 2.36~3.2 to 3.26~3.99 THz continuously via changing the chemical potential of graphene.  相似文献   

11.
Multi-band or broadband perfect metamaterial absorbers, based on coplanar super-unit structure or multiple vertically stacked layers, have received intense attention because of their potential for practical applications. The resonance mechanism of them usually only utilizes the overlapping of the fundamental resonance of the different-sized patterns, and neglects the high-order resonance of the structure, and thus making the proposed structures quite troublesome to be fabricated and the mechanism of the current demonstrated absorbers lack of novelty. In this paper, a simple design of dual-band terahertz absorber consisted of only a traditional square metallic patch and a dielectric layer on top of a continuous ground plane is presented. Simulation results show that the single resonant structure has two resonance absorption peaks, which are both average over 99.5 %. The mechanism of the dual-band absorber is due to the overlapping of the fundamental mode and three-order response of the patterned structure, which is totally different from previous reports that only combining the fundamental resonances of the different-shaped complex structures to obtain the dual-band response. Furthermore, the proposed single-patterned structure can be used to extend the number of the absorption peaks (for example, triple-band absorber) by combining one more resonance (the five-order response). The proposed absorbers with the simple structure design have potential applications in many areas, such as detection, sensing, and selective thermal emitters.  相似文献   

12.

Graphene can be utilized as a tunable material for a wide range of infrared wavelength regions due to its tunable conductivity property. In this paper, we use Y-shaped silver material resonator placed over the top of multiple graphene silica-layered structures to realize the perfect absorption over the infrared wavelength region. We propose four different designs by placing the graphene sheet over silica. The absorption and reflectance performance of the structures have been explored for 1500- to 1600-nm wavelength range. The proposed design also explores the absorption tunability of the structure for the different values of graphene chemical potential. We have reported the negative impedance for the perfect absorption for proposed metamaterial absorber structures. All the metamaterial absorbers have reported 99% of its absorption peaks in the infrared wavelength region. These designs can be used as a tunable absorber for narrowband and wideband applications. The proposed designs will become the basic building block of large photonics design which will be applicable for polariser, sensor, and solar applications.

  相似文献   

13.
Plasmonics - A metamaterial-based absorber with metal–dielectric–metal (MDM) structure design strategy is proposed and verified in terahertz the band. An absorption peak (amplitude is...  相似文献   

14.

Terahertz metamaterial absorbers (MMA) have found wide scope of research prospective, remarkably in the development of multiband absorbers. Considerable applications are established using these multiband absorbers in THz imaging, wireless communication and bolometric detectors. The MMA was built on a GaAs substrate of 30 µm thickness and the hexagonal metallic pattern was etched out on a gold layer of 0.4 µm thickness on the top surface. The underlying ground layer is metallic backed. This design realizes the multiband (9-bands) of absorption in the spectral region from 0.56 to 0.92 THz. The multiband absorption mechanism of the absorber was examined by electric field dispersion analysis and impedance matching concept. From the established results, the absorber exhibits nine bands within a narrow frequency range and secures promising applications in hyperspectral imaging, clinical sensing and detection.

  相似文献   

15.
Wu  Jipeng  Liang  Yanzhao  Guo  Jun  Jiang  Leyong  Dai  Xiaoyu  Xiang  Yuanjiang 《Plasmonics (Norwell, Mass.)》2020,15(1):83-91

In this paper, Tamm plasmons with topological insulators in a composite structure consisting of Bi2Se3, spacer layer, and one-dimensional photonic crystal (1DPC) have been demonstrated theoretically. The perfect absorption has been realized in the terahertz regime because of the optical Tamm states (OTSs) excited at the interface between Bi2Se3 and 1DPC. The perfect absorption can be realized for both TE and TM waves, and it is noted that the perfect absorption can be obtained at any incident angle by simultaneously changing the wavelength of incident light for TE-polarizations. Moreover, the perfect absorption can be realized at different wavelengths with the change of the chemical potential and the thickness of Bi2Se3. The thickness and the dielectric constant of the spacer layer will also play a vital role in the performance of the perfect absorber. Especially, the multichannel perfect absorption phenomenon can be achieved by choosing the appropriate thickness of the spacer layer. This tunable and multichannel terahertz perfect absorber has great application potential in the solar energy, photodetection, and THz biosensor.

  相似文献   

16.
17.
Zhu  Jun  Xu  Zhengjie  Hu  Cong 《Plasmonics (Norwell, Mass.)》2018,13(6):2125-2132
Plasmonics - Surface plasmon polariton nanolaser, which can achieve all-optical circuits and optoelectronic integration, is a major research area in nano-optics. We propose a novel tunable...  相似文献   

18.
Plasmonics - A metamaterial reflective converter with vanadium oxide (VO2) film is investigated in this paper. The results indicate that a broadband polarization conversion ratio (PCR) above 90% is...  相似文献   

19.
Plasmonics - A novel design of a quad-band metamaterial absorber, which consisted of only a metallic resonator on top of a dielectric spacing layer and a metallic board on the bottom, is presented...  相似文献   

20.
Plasmonics - In this paper, we propose a novel gravity-tailored absorber to achieve two different absorption peaks at two different frequencies, whose improvement is based on the traditional...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号