首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Calnexin is an endoplasmic reticulum-localized molecular chaperone protein which is involved in folding and quality control of proteins. To evaluate the expression of calnexin in soybean seedlings under osmotic stress, immunoblot analysis was performed using a total membrane protein fraction. Calnexin constantly accumulated at an early growth stage of soybean under normal growth conditions. Expression of this protein decreased in 14-day-old soybean roots when treated with 10% polyethylene glycol for 2 days. Other abiotic stresses such as drought, salinity, cold as well as abscisic acid treatment, similarly reduced accumulation of calnexin and this reduction was correlated with reduction in root length in soybean seedlings under abiotic stresses. When compared between soybean and rice, calnexin expression was not changed in rice under abiotic stresses. Using Flag-tagged calnexin, a 70 kDa heat shock cognate protein was identified as an interacting protein. These results suggest that osmotic or other abiotic stresses highly reduce accumulation of the calnexin protein in developing soybean roots. It is also suggested that calnexin interacts with a 70 kDa heat shock cognate protein and probably functions as molecular chaperone in soybean.  相似文献   

3.
Plants typically respond to environmental stresses by inducing antioxidants as a defense mechanism. As a number of these are also phytochemicals with health-promoting qualities in the human diet, we have used mild environmental stresses to enhance the phytochemical content of lettuce, a common leafy vegetable. Five-week-old lettuce (Lactuca sativa L.) plants grown in growth chambers were exposed to mild stresses such as heat shock (40 °C for 10 min), chilling (4 °C for 1 d) or high light intensity (800 μmol m?2 s?1 for 1 d). In response to these stresses, there was a two to threefold increase in the total phenolic content and a significant increase in the antioxidant capacity. The concentrations of two major phenolic compounds in lettuce, chicoric acid and chlorogenic acid, increased significantly in response to all the stresses. Quercetin-3-O-glucoside and luteolin-7-O-glucoside were not detected in the control plants, but showed marked accumulations following the stress treatments. The results suggest that certain phenolic compounds can be induced in lettuce by environmental stresses. Of all the stress treatments, high light produced the greatest accumulation of phenolic compounds, especially following the stress treatments during the recovery. In addition, key genes such as phenylalanine ammonia-lyase (PAL), l-galactose dehydrogenase (l-GalDH), and γ-tocopherol methyltransferase (γ-TMT) involved in the biosynthesis of phenolic compounds, ascorbic acid, and α-tocopherol, respectively, were rapidly activated by chilling stress while heat shock and high light did not appear to have an effect on the expression of PAL and γ-TMT. However, l-GalDH was consistently activated in response to all the stresses. The results also show that these mild environmental stresses had no adverse effects on the overall growth of lettuce, suggesting that it is possible to use mild environmental stresses to successfully improve the phytochemical content and hence the health-promoting quality of lettuce with little or no adverse effect on its growth or yield.  相似文献   

4.
The combined effects of salt stress and gibberellic acid (GA3) on plant growth and nutritional status of maize (Zea mays L. cv., DK 647 F1) were studied in a pot experiment. Treatments were (1) control (C): nutrient solution alone, (2) salt stress (S): 100 mM NaCl, (3) S + GA1: 100 mM NaCl and 50 ppm GA3 and (4) S + GA2: 100 mM NaCl and 100 ppm GA3. Salt stress (S) was found to reduce the total dry matter, chlorophyll content, relative water content (RWC), but to increase proline accumulation, superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POD; EC 1.11.1.7) and polyphenol oxidase (PPO; 1.10.3.1) enzyme activities and electrolyte leakage. GA3 treatments overcame to variable extents the adverse effects of NaCl stress on the above physiological parameters. GA3 treatments reduced the activities of enzyme in the salt-stressed plants. Salt stress reduced some macro and micronutrient concentrations but exogenous application of GA3 increased these to levels of control treatment. Foliar application of GA3 counteracted some of the adverse effects of NaCl salinity with the accumulation of proline which maintained membrane permeability and increased macro and micronutrient levels.  相似文献   

5.
6.
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression of target mRNAs in plant growth, development, abiotic stress responses, and pathogen responses. Cold stress is one of the most common abiotic factors affecting plants, and it adversely affects plant growth, development, and spatial distribution. To understand the roles of miRNAs under cold stress in Populus tomentosa, we constructed two small RNA libraries from plantlets treated or not with cold conditions (4 °C for 8 h). High-throughput sequencing of the two libraries identified 144 conserved miRNAs belonging to 33 miRNA families and 29 new miRNAs (as well as their corresponding miRNA1s) belonging to 23 miRNA families. Differential expression analysis showed that 21 miRNAs were down-regulated and nine miRNAs were up-regulated in response to cold stress. Among them, 19 cold-responsive miRNAs, two new miRNAs and their corresponding miRNA1s were validated by qRT-PCR. A total of 101 target genes of the new miRNAs were predicted using a bioinformatics approach. These target genes are involved in growth and resistance to various stresses. The results demonstrated that Populus miRNAs play critical roles in the cold stress response.  相似文献   

7.
Alkyl hydroperoxide reductase (AhpC) is known to detoxify peroxides and reactive sulfur species (RSS). However, the relationship between its expression and combating of abiotic stresses is still not clear. To investigate this relationship, the genes encoding the alkyl hydroperoxide reductase (ahpC) from Anabaena sp. PCC 7120 were introduced into E. coli using pGEX-5X-2 vector and their possible functions against heat, salt, carbofuron, cadmium, copper and UV-B were analyzed. The transformed E. coli cells registered significantly increase in growth than the control cells under temperature (47 °C), NaCl (6% w/v), carbofuron (0.025 mg ml?1), CdCl2 (4 mM), CuCl2 (1 mM), and UV-B (10 min) exposure. Enhanced expression of ahpC gene as measured by semi-quantitative RT-PCR under aforementioned stresses at different time points demonstrated its role in offering tolerance against multiple abiotic stresses.  相似文献   

8.
The effects of bio-regulators salicylic acid (SA) and 24-epibrassinolide (EBL) as seed soaking treatment on the growth traits, content of photosynthetic pigments, proline, relative water content (RWC), electrolyte leakage percent (EC%), antioxidative enzymes and leaf anatomy of Zea mays L. seedlings grown under 60 or 120 mM NaCl saline stress were studied. A greenhouse experiment was performed in a completely randomized design with nine treatments [control (treated with tap water); 60 mM NaCl; 120 mM NaCl; 10 4 M SA; 60 mM NaCl + 10 4 M SA; 120 mM NaCl + 10 4 M SA; 10 μM EBL; 60 mM NaCl + 10 μMEBL or 120 mM NaCl + 10 μM EBL] each with four replicates. The results indicated that NaCl stress significantly reduced plant growth traits, leaf photosynthetic pigment, soluble sugars, RWC%, and activities of catalase (CAT), peroxidase (POX) as well as leaf anatomy. However, the application of SA or EBL mitigated the toxic effects of NaCl stress on maize seedlings and considerably improved growth traits, photosynthetic pigments, proline, RWC%, CAT and POX enzyme activities as well as leaf anatomy. This study highlights the potential ameliorative effects of SA or EBL in mitigating the phytotoxicity of NaCl stress in seeds and growing seedlings.  相似文献   

9.
Phenolic content and antioxidant potential of lentil sprouts may be enhanced by treatment of seedlings in abiotic stress conditions without any negative influence on nutritional quality.The health-relevant and nutritional quality of sprouts was improved by elicitation of 2-day-old sprouts with oxidative, osmotic, ion-osmotic and temperature stresses. Among the sprouts studied, those obtained by elicitation with osmotic (600 mM mannitol) and ion-osmotic (300 mM NaCl) shocks had the highest total phenolic content levels: 6.52 and 6.56 mg/g flour, respectively. Oxidative stress significantly enhanced the levels of (+)-catechin and p-coumaric acid. A marked elevation of the chlorogenic and gallic acid contents was also determined for sprouts induced at 4 °C and 40 °C. The elevated phenolic content was translated into the antioxidant potential of sprouts, especially the ability to reduce lipid oxidation. A marked elevation of this ability was determined for seedlings treated with 20 mM, 200 mM H2O2 (oxidative stress) and 600 mM mannitol (osmotic stress); about a 12-fold, 8-fold and 9.5-fold increase in respect to control sprouts. The highest ability to quench free radicals was observed in sprouts induced by osmotic stress (IC50- 4.91 and 5.12 mg/ml for 200 mM and 600 mM mannitol, respectively). The highest total antioxidant activity indexes were determined for sprouts elicited with 20 mM H2O2 and 600 mM mannitol: 4.0 and 3.4, respectively. All studied growth conditions, except induction at 40 °C, caused a significant elevation of resistant starch levels which was also affected in a subsequent reduction of starch digestibility.Improvement of sprout quality by elicitation with abiotic stresses is a cheap and easy biotechnology and it seems to be an alternative to conventional techniques applied to improve the health promoting phytochemical levels and bioactivity of low-processed food.  相似文献   

10.
11.
Event DAS-59122-7 is a maize (Zea mays) genetically modified to contain cry34Ab1 and cry35Ab1 genes from Bacillus thuringiensis (Bt) strain PS149B1 and the pat (phosphinothricin acetyltransferase) gene from Streptomyces viridochromogenes. In planta, co-expression of the Cry34Ab1 and Cry35Ab1 proteins confer resistance to corn rootworms (Diabrotica virgifera virgifera LeConte and Diabrotica barberi Smith and Lawrence, respectively; CRW), a major pest of maize. Expression of the PAT protein confers tolerance to herbicides containing glufosinate-ammonium. The current study was conducted to evaluate the nutritional value of grain containing event DAS-59122-7 (59122) by comparing the growth performance and carcass yield of broiler chickens fed diets prepared with 59122 maize grain as the sole source of corn with that of broiler chickens fed diets containing near isoline maize grain (control) and three non-transgenic reference maize-grain controls (Pioneer hybrids 33P66, 33J56, and 33R77). Diets produced with 59122 or non-transgenic maize grain were fed to broilers (n = 120/group) for a period of 42 days in three phases: Starter, Days 0–21 [530 g maize grain per kg of diet], Grower, Days 22–35 [580 g maize grain per kg of diet] and Finisher, Days 36–42 [700 g maize grain per kg of diet] in accordance with standard commercial poultry farming practice. Performance and standard carcass yield data were determined at the end of the feeding trial. Differences between 59122 maize and near isoline control maize-grain means were evaluated with statistical significance at P<0.05. Performance and carcass traits from broilers consuming diets produced with 59122 and near isoline were compared to tolerance intervals constructed using data from broiler groups fed diets produced with reference maize grains. No statistically significant differences were observed in mortality, weight gain, feed efficiency (corrected for mortalities), and carcass yields between broilers consuming diets produced with 59122 maize and those consuming diets produced with near isoline control grain. Additionally, all response variables evaluated in both groups fell within the tolerance intervals of the values observed in broilers fed diets produced with the reference maize grains. Based on the results from this study, it was concluded that 59122 maize was nutritionally equivalent to non-transgenic control maize.  相似文献   

12.
13.
Winter freezing damage is a crucial factor in overwintering crops such as the octoploid strawberry (Fragaria × ananassa Duch.) when grown in a perennial cultivation system. Our study aimed at assessing metabolic processes and regulatory mechanisms in the close-related diploid model woodland strawberry (Fragaria vesca L.) during a 10-days cold acclimation experiment. Based on gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS) metabolite profiling of three F. vesca genotypes, clear distinctions could be made between leaves and non-photosynthesizing roots, underscoring the evolvement of organ-dependent cold acclimation strategies. Carbohydrate and amino acid metabolism, photosynthetic acclimation, and antioxidant and detoxification systems (ascorbate pathway) were strongly affected. Metabolic changes in F. vesca included the strong modulation of central metabolism, and induction of osmotically-active sugars (fructose, glucose), amino acids (aspartic acid), and amines (putrescine). In contrast, a distinct impact on the amino acid proline, known to be cold-induced in other plant systems, was conspicuously absent. Levels of galactinol and raffinose, key metabolites of the cold-inducible raffinose pathway, were drastically enhanced in both leaves and roots throughout the cold acclimation period of 10 days. Furthermore, initial freezing tests and multifaceted GC/TOF-MS data processing (Venn diagrams, independent component analysis, hierarchical clustering) showed that changes in metabolite pools of cold-acclimated F. vesca were clearly influenced by genotype.  相似文献   

14.
Genome-wide identification and characterisation of F-box family in maize   总被引:1,自引:0,他引:1  
F-box-containing proteins, as the key components of the protein degradation machinery, are widely distributed in higher plants and are considered as one of the largest known families of regulatory proteins. The F-box protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, systematic analysis of the F-box family in maize (Zea mays) has not been reported yet. In this paper, we identified and characterised the maize F-box genes in a genome-wide scale, including phylogenetic analysis, chromosome distribution, gene structure, promoter analysis and gene expression profiles. A total of 359 F-box genes were identified and divided into 15 subgroups by phylogenetic analysis. The F-box domain was relatively conserved, whereas additional motifs outside the F-box domain may indicate the functional diversification of maize F-box genes. These genes were unevenly distributed in ten maize chromosomes, suggesting that they expanded in the maize genome because of tandem and segmental duplication events. The expression profiles suggested that the maize F-box genes had temporal and spatial expression patterns. Putative cis-acting regulatory DNA elements involved in abiotic stresses were observed in maize F-box gene promoters. The gene expression profiles under abiotic stresses also suggested that some genes participated in stress responsive pathways. Furthermore, ten genes were chosen for quantitative real-time PCR analysis under drought stress and the results were consistent with the microarray data. This study has produced a comparative genomics analysis of the maize ZmFBX gene family that can be used in further studies to uncover their roles in maize growth and development.  相似文献   

15.
The auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) (together with PIN-like proteins) and efflux/conditional P-glycoprotein (ABCB) are major protein families involved in auxin polar transport. However, how they function in responses to exogenous auxin and abiotic stresses in maize is largely unknown. In this work, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmLAX, ZmPIN, ZmPILS and ZmABCB family genes from maize. The results showed that five ZmLAXs, fifteen ZmPINs, nine ZmPILSs and thirty-five ZmABCBs were mapped on all ten maize chromosomes. Highly diversified gene structures, nonconservative transmembrane helices and tissue-specific expression patterns suggested the possibility of function diversification for these genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression patterns of ZmLAX, ZmPIN, ZmPILS and ZmABCB genes under exogenous auxin and different environmental stresses. The expression levels of most ZmPIN, ZmPILS, ZmLAX and ZmABCB genes were induced in shoots and were reduced in roots by various abiotic stresses (drought, salt and cold stresses). The opposite expression response patterns indicated the dynamic auxin transport between shoots and roots under abiotic stresses. Analysis of the expression patterns of ZmPIN, ZmPILS, ZmLAX and ZmABCB genes under drought, salt and cold treatment may help us to understand the possible roles of maize auxin transporter genes in responses and tolerance to environmental stresses.  相似文献   

16.
The time dependent response of the hydrodynamic root system to PEG-induced water stress was studied in intact maize Zea mays L. seedlings at intervals varying from several seconds to 3 h by detecting diffusional water transfer with the use of pulsed NMR. In order to establish the contribution of water transfer through aquaporins in response to water stress, the transmembrane water transport in control roots and roots treated with aquaporin blocker was detected. Changes in diffusional water transfer under stress were shown to depend on the duration of osmotic treatment, and include the series of heterogeneous processes. A transient pulsed jump in diffusional water transfer detected several seconds after beginning the osmotic treatment is associated with the spread of the wave of hydraulic pressure along the root. It is proposed that early responses of the hydrodynamic system of maize roots to PEG-induced water stress lies in the unequal change in water permeability of the plasmalemma and tonoplast resulting from the changes in aquaporin activity and perhaps in the escalation of water transfer along the cell vacuome.  相似文献   

17.
We assessed the effects of vitreousness and particle size of maize grain on ruminal and intestinal in sacco degradation of dry matter, starch and nitrogen. Six maize grain (Zea mays) genotypes characterized by differing vitreousness (proportion of vitreous in total endosperm) were ground (3-mm screen; Gr, ground particles, mean particle size (MPS): 526 μm) and cracked with a roller mill using two gap width settings (CS, cracked small particles, MPS: 1360 μm; CL, cracked large particles, MPS: 2380 μm). The ruminal and intestinal in sacco degradation of dry matter, starch and nitrogen was measured on three dry Holstein cows, fitted with rumen, proximal duodenum and terminal ileum cannulas, fed maize silage ad libitum twice daily. The ruminal starch degradability and intestinal digestibility differed among genotypes (P<0.001) and decreased as particle size increased (P<0.001). For the same particle size, starch ruminal degradability decreased (P<0.05) and intestinal digestibility decreased (P<0.002) with vitreousness. Particle size and vitreousness of maize grain are efficient factors for manipulating the amount of starch escaping rumen degradation, but may be limiting for the amount of starch digested in the small intestine.  相似文献   

18.
Zea mays L., known also as corn and maize, is the most important crop according to the amount of tonnes produced each year. Fungi cause significant destruction of maize in the field as well as during storage rendering the grain unsuitable for human consumption by decreasing its nutritional value and by producing mycotoxins that are detrimental to both human and animal health. Fusarium species are widely distributed and are amongst the most frequently isolated fungal species by plant pathologists. Due to the fact that the Fusarium species involved in maize ear rot vary in fungicide sensitivity, pathogenicity as well as in their capability to produce mycotoxins, accurate quantification and identification is of paramount significance. Currently no method has been developed to test for Fusarium species in maize seed that has been validated and published by the International Seed Testing Association (ISTA). Malachite green agar 2.5 ppm (MGA 2.5) is a potent selective medium for isolation and enumeration of Fusarium spp. In this study, eight different media compositions, potato dextrose agar (PDA), PDA + malachite green oxalate, corn meal agar, 1/2 PDA + malachite green oxalate, 1% malt agar, carnation leaf agar supplemented with potassium chloride (KCLA), malachite green agar (MGA 2.5) and MGA 2.5 + sterile carnation leaf pieces were compared using four Fusarium species (F. graminearum, F. proliferatum, F. subglutinans and F. verticillioides) and five commonly encountered saprophytic fungi (Aspergillus niger, Penicillium crustosum, P. digitatum, Trichoderma harzianum and Rhizopus stolonifer). The maize kernels were surface disinfected using three concentrations of sodium hypochlorite (0.5%, 1% and 1.5% NaOCl) and for different time intervals (1 min, 3 min, 5 min and 10 min). The effect of black-blue light (365 nm) on sporulation of the fungi was also investigated. Surface disinfection of maize seeds with 1% NaOCl for 5 min provided consistent results. PDA, 1/2 PDA, 1% malt agar and KCLA allowed profuse growth of the Fusarium species as well as saprophytes. Media that contained malachite green oxalate was most inhibitory to the radial colony growth of the saprophytes and the Fusarium species. The Fusarium species growing on these media formed underdeveloped morphological structures, thereby obscuring accurate identification. MGA 2.5 showed better hindering of the saprophytes in some instances. MGA 2.5 amended with sterile carnation leaf pieces was the most satisfactory medium in hindering the growth of the saprophytes while allowing adequate sporulation by the four Fusarium species to permit accurate identification. The media also resulted in higher F. verticillioides and lower saprophytic fungal isolation frequency when compared to the other media tested.  相似文献   

19.
Quantity and quality of irrigation water are considered the most imperative limiting factors for plant production in arid environment. Adoptions of strategies can minimize crop water consumption while nonexistent yield reduction is considered challenge for scholars especially in arid environment. Grafting is regarded as a promising tool to avoid or reduce yield loss caused by abiotic stresses. Tomato (Solanum lycopersium Mill.), commercial cultivar Faridah was grafted on Unifort rootstock and grown under regulated deficit irrigation (RDI) (100%, 80% and 60% ETc), using two types of irrigation water, fresh (EC = 0.86 dS/m) and brackish (EC = 3.52 dS/m). The effects of grafting and RDI on water use efficiency, vegetative growth, yield, fruit quality were investigated. Plant vegetative growth was reduced under water and salinity stresses. Grafting the plant significantly improves the vegetative growth under both conditions. The results showed that crop yield, Ca+2 and K+ were considerably increased in grafted tomato compared to non-grafted plants under water and salinity stresses. Grafted tomato plants accumulated less Na+ and Cl, especially under high levels of salinity compared to non-grafted plants. Grafting tomato plants showed a slight decrease on the fruit quality traits such as vitamin C, titratable acidity (TA) and total soluble solids (TSS). This study confirmed that grafted tomato plants can mitigate undesirable impact of salt stress on growth and fruit quality.  相似文献   

20.
Inappropriate farm practices can increase greenhouse gases (GHGs) emissions and reduce soil organic carbon (SOC) sequestration, thereby increasing carbon footprints (CFs), jeopardizing ecosystem services, and affecting climate change. Therefore, the objectives of this study were to assess the effects of different tillage systems on CFs, GHGs emissions, and ecosystem service (ES) values of climate regulation and to identify climate-resilient tillage practices for a winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) cropping system in the North China Plain (NCP). The experiment was established in 2008 involving no-till with residue retention (NT), rotary tillage with residue incorporation (RT), sub-soiling with residue incorporation (ST), and plow tillage with residue incorporation (PT). The results showed that GHGs emissions from agricultural inputs were 6432.3–6527.3 kg CO2-eq ha−1 yr−1 during the entire growing season, respectively. The GHGs emission from chemical fertilizers and irrigation accounted for >80% of that from agricultural inputs during the entire growing season. The GHGs emission from agricultural inputs were >2.3 times larger in winter wheat than that in the summer maize season. The CFs at yield-scale during the entire growing season were 0.431, 0.425, 0.427, and 0.427 without and 0.286, 0.364, 0.360, and 0.334 kg CO2-eq kg−1 yr−1 with SOC sequestration under NT, RT, ST, and PT, respectively. Regardless of SOC sequestration, the CFs of winter wheat was larger than that of summer maize. Agricultural inputs and SOC change contributed mainly to the component of CFs of winter wheat and summer maize. The ES value of climate regulation under NT was ¥159.2, 515.6, and 478.1 ha−1 yr−1 higher than that under RT, ST, and PT during the entire growing season. Therefore, NT could be a preferred “Climate-resilient” technology for lowering CFs and enhancing ecosystem services of climate regulation for the winter wheat–summer maize system in the NCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号