首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Chatzianagnostou  E.  Ketzaki  D.  Dabos  G.  Tsiokos  D.  Weeber  J.-C.  Miliou  A. 《Plasmonics (Norwell, Mass.)》2019,14(4):823-838

Herein, we present a design analysis and optimization of open-cladded plasmonic waveguides on a Si3N4 photonic waveguide platform targeting CMOS-compatible manufacturing. For this purpose, two design approaches have been followed aiming to efficiently transfer light from the hosting photonic platform to the plasmonic waveguide and vice versa: (i) an in-plane, end-fire coupling configuration based on a thin-film plasmonic structure and (ii) an out-of-plane directional coupling scheme based on a hybrid slot waveguide. A comprehensive numerical study has been conducted, initially deploying gold as the reference metal material for validating the numerical models with already published experimental results, and then aluminum and copper have been investigated for CMOS manufacturing revealing similar performance. To further enhance coupling efficiency from the photonic to the plasmonic part, implementation of plasmonic tapering schemes was examined. After thorough investigation, plasmo-photonic structures with coupling losses per single interface in the order of 1 dB or even in the sub-dB level are proposed, which additionally exhibit increased tolerance to deviations of critical geometrical parameters and enable CMOS-compatible manufacturing.

  相似文献   

2.
Zheng  Pengfei  Yang  Huimin  Fan  Meiyong  Hu  Guohua  Zhang  Ruohu  Yun  Binfeng  Cui  Yiping 《Plasmonics (Norwell, Mass.)》2018,13(6):2029-2035

A hybrid plasmonic modulator based on graphene on channel plasmonic polariton waveguide was proposed to overcome the difficulty in achieving high-speed modulation on the nanometric plasmonic waveguide platform. The extinction ratio and the figure of merit of the proposed modulator were analyzed in detail, and a tradeoff between them was found due to the intrinsic loss of the channel plasmonic polariton waveguide. And an optimized hybrid plasmonic modulator with large modulation bandwidth of 0.662 THz, low power consumption of 118.7 fJ/bit, and short device length of 7.680 μm was obtained theoretically. In addition, the proposed hybrid plasmonic modulator based on graphene on channel plasmonic polariton waveguide is easy to fabricate and provides a potential solution for the high-speed plasmonic modulator.

  相似文献   

3.

Reconfigurable one-, two-, and three-bit plasmonic logic gate configurations have been proposed, which work by covering a straight slot waveguide with materials with tunable dielectric constants, such as graphene. By encoding the logic states in the values of dielectric constants as opposed to different waveguides, the plasmon excitation problems are minimized and the simplified logic gate configurations could be easily implemented.

  相似文献   

4.
Tappura  K.  Luomahaara  J.  Haatainen  T.  Hassel  J.  Vehmas  T. 《Plasmonics (Norwell, Mass.)》2016,11(2):627-635

A set of periodic plasmonic nanostructures is designed and fabricated as a means to investigate light absorption in single-crystal silicon thin-film structures with silicon-on-insulator (SOI) wafers as a model system. It is shown both computationally and experimentally that plasmon-induced absorption enhancement is remarkably higher for such devices than for thick or semi-infinite structures or for the thin-film amorphous silicon solar cells reported in the literature. Experimental photocurrent enhancements of the orders of 12 and 20 are demonstrated for non-optimized 2200-nm-thick photoconductive and 300-nm-thick photovoltaic test structures, respectively. Theoretical absorption enhancements as high as 80 are predicted to be achievable for the similar structures. The features of the spectral enhancements observed are attributed to several interacting resonance phenomena: not just to the favourable scattering of light by the periodic plasmonic nanoparticle arrays into the SOI device layer and coupling to the waveguide modes interacting with the plasmonic array but also to the Fabry-Pérot type interferences in the layered structure. We show that the latter effect gives a significant contribution to the spectral features of the enhancements, although frequently ignored in the discussions of previous reports.

  相似文献   

5.
An evanescent wave based biosensor is developed on the silica‐on‐silicon (SOS) with a cascaded waveguide coupler for the detection of recombinant growth hormone. So far, U ‐bends and tapered waveguides are demonstrated for increasing the penetration depth and enhancing sensitivity of the evanescent wave sensor. In this work, a monolithically integrated sensor platform containing a cascaded waveguide coupler with optical power splitters and combiners designed with S ‐bends and tapper waveguides is demonstrated for an enhanced detection of recombinant growth hormone. In the cascaded waveguide coupler, a large surface area to bind the antibody with increased penetration depth of evanescent wave to excite the tagged‐rbST is obtained by splitting the waveguide into multiple paths using Y splitters designed with s ‐bends and subsequently combining them back to a single waveguide through tapered waveguide and combiners. Hence a highly sensitive fluoroimmunoassay sensor is realized. Using the 2D FDTD (Finite‐difference time‐domain method) simulation of waveguide with a point source in Rsoft FullWAVE, the fluorescence coupling efficiency of straight and bend section of waveguide is analyzed. The sensor is demonstrated for the detection of fluorescently‐tagged recombinant growth hormone with the detection limit as low as 25 ng/ml. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Ultracompact optical directional coupler is one of the key elements for nanoscale optical networks and highly integrated optical circuits. Although the transverse size has been reduced down to subwavelength by exploiting plasmonic waveguides, the longitudinal size has remained yet on the micrometer-scale, which seems to be a fundamental limitation by the conventional configuration based on cross-talk coupling between two neighboring waveguides. We have proposed a novel conception of optical directional coupler based on loss-overcompensated resonant coupling between two plasmonic waveguides via an in-between gain-assisted nanocavity. The loss-overcompensated state can be achieved by adjusting pumping rate in the nanocavity. The validity of the proposed conception is confirmed by numerical simulations of a physical model with the deep-subwavelength planar footprint of 300 nm × 300 nm, THz bandwidth, and an exceptionally low energy consumption on the order of 0.1 fJ per signal pulse. To our knowledge, it is the first proposed ultrafast nanoscale four-port directional coupler.  相似文献   

7.
8.

We investigate the properties of entanglement between two quantum dots (QDs) with an azimuthal angle difference in two different plasmonic waveguide systems where a cavity coupled to the QDs is included or not. The real space formalism and the concurrence are used in solving the eigenvalue equation and calculating the entanglement, respectively. We analyze the influence of azimuthal angle difference on the entanglement and propose several effective ways to achieve high entanglement by adjusting the detuning, the QD-cavity coupling strength, and so on. Moreover, comparing the entanglement in the two models, we demonstrate that the addition of cavity can improve the entanglement of two QDs.

  相似文献   

9.

In this paper, a wavelength demultiplexing structure based on multi-teeth-shaped metal-insulator-metal (MIM) plasmonic waveguide is designed and numerically studied using the finite-difference time-domain (FDTD) method. Investigating the characteristics of a multi-teeth-shaped plasmonic waveguide structure reveals that with the design of the structure, it was possible to create a mode inside the bandgap of the filter. Based on the created mode inside the bandgap of the filter, the demultiplexer structure has been proposed and investigated. By changing the geometric parameters of the structure, the transmission wavelength of the demultiplexer channel can be adjusted. The proposed demultiplexer can be used in integrated optical circuits.

  相似文献   

10.
Coupling of incident light through an air region into an S-shape silver (Ag) plasmonic nanowire waveguide (SSAPNW) is a highly difficult challenge of light guiding on the surface of metal nanowire. In this paper, we numerically analyze the coupling effect of an SSAPNW which is covered by a dielectric medium using a finite element method. The coupling effect can be modulated by adjusting the Ag nanowire diameter and the covering dielectric medium width and wavelength of incident light, and the propagation length of surface plasmon (SP) coupling can be maximized. Simulation results reveal that the field confinement can be significantly improved and the majority of the electric field can be carried on the surface of a bending Ag nanowire. The effect of electric field transport along an SSAPNW due to SP coupling and Fabry-Perot resonance is investigated for different dimensions and lengths. Accordingly, long propagation lengths of about 41.5 μm for 10?×?SSAPNW at an incident wavelength of 810 nm and longer propagation length can be achieved if more sections of an SSAPNW are used. Simulation results offer an efficient method for optimizing SP coupling into bending metal nanowire waveguides and promote the realization of highly integrated plasmonic devices.  相似文献   

11.
In this paper, a plasmonic-photonic nanostructure has been introduced for efficient unidirectional coupling of free-space radiation to surface plasmon polariton (SPP) waves under normal illumination on a subwavelength slit. The structure consists of a conventional metallic slit-groove nanostructure integrated with a plasmonic waveguide to support SPP waves along the desired direction with a remarkable lateral confinement. The unidirectional coupling is achieved by using an integrated plasmonic distributed reflector designed under Bragg condition. This reflector basically distributes part of the light coupled through the slit into the SPP modes of the waveguide. Numerical simulations show that up to 26 % of the normally incident light couples to the transversely localized field of the surface plasmon. In addition, the ratio of mode current density of the surface plasmon, launched in the desired direction, to that in the opposite direction can reach about 23 times. This structure shows a 2.5-fold improvement in coupling efficiency relative to a standard slit-groove structure. Also, the transmission distance for the new nanostructure is shown to be more than 8 times greater than that of the standard nanostructure.  相似文献   

12.
Using the finite difference time-domain method, we present a comprehensive numerical investigation of a branch-shaped filter based on the metal-insulator-metal (MIM) waveguide. The results show that several passbands and stopbands appear in the transmission spectra, which are resulted by the phase differences between the surface plasmon polaritons (SPPs) propagating along the straight waveguide and the SPPs resonating in the circuit formed by the branch and the straight waveguide. The effects of the structural parameters of the branch-shaped filters on their transmission properties are also studied. These results not only present an alternative plasmonic filter for the MIM waveguides but also help us to understand the transmission properties of the circuit-shaped structures.  相似文献   

13.
This work proposes and investigates theoretically a biosensor that is an integrated plasmonic Mach–Zehnder interferometer. The biosensor consists of three sections. The first and third sections are input and output dielectric waveguides whose core is a silicon film. The second section is a combination of a surface plasmon polariton waveguide and a metal-insulator-silicon waveguide, which are separated by a thick gold film. The former and the latter function as sensing and reference arms, respectively. The latter supports a mode whose fields are highly enhanced in a thin insulator, silicon nitride film, and it has relatively small propagation loss. It is shown that the biosensor has insertion loss lower than 2 dB, and that it is very compact since the length of its second section for sensing is shorter than 6 μm. In addition, it is discussed that it can be easily implemented by using simple fabrication processes. Analyzed are the characteristics of sensing a refractive index change of liquid covering the biosensor. Despite its compactness, they are similar to those of previous surface plasmon interferometers. Also, its characteristics as a DNA sensor are analyzed. The analysis demonstrates that the biosensor can detect sensitively target single-stranded DNAs whose total weight is smaller than 10 fg.  相似文献   

14.
We have numerically investigated an analog of electromagnetically induced transparency (EIT) in a metal-dielectric-metal (MDM) waveguide bend. The geometry consists of two asymmetrical stubs extending parallel to an arm of a straight MDM waveguide bend. Finite-difference time-domain simulations show that a transparent window is located at 1550 nm, which is the phenomenon of plasmonic-induced transparency (PIT). Signal wavelength is assumed to be 820 nm. The velocity of the plasmonic mode can be largely slowed down while propagating along the MDM bends. Multiple-peak plasmon-induced transparency can be realized by cascading multiple cavities with different lengths and suitable cavity-cavity separations. Large group index up to 73 can be obtained at the PIT window. Our proposed configuration may thus be applied to storing and stopping light in plasmonic waveguide bends. In addition, the relationship between the transmission characteristics and the geometric parameters including the radius of the nano-ring, the coupling distance, and the deviation length between the stub and the nano-ring is studied in a step further. The velocity of the plasmonic mode can be largely slowed down while propagating along the MDM bends. For indirect coupling, formation of transparency window is determined by resonance detuning, but, evolution of transparency is mainly attributed to the change of the coupling distance. Theoretical results may provide a guideline for control of light in highly integrated optical circuits. The characteristics of our plasmonic system indicate a significant potential application in integrated optical circuits such as optical storage, ultrafast plasmonic switch, highly performance filter, and slow light devices.  相似文献   

15.
Liu  Xiaoshan  Zhou  Jin  Zhang  Houjiao  Zhong  Haozong  Shang  Jiangshan  Liu  Zhengqi 《Plasmonics (Norwell, Mass.)》2019,14(6):1427-1433

The design of thin-film semiconductor absorbers is a long-sought-after goal of crucial importance for optoelectronic devices. We propose a new strategy that achieves multi-band optical absorption in an ultra-thin semiconductor-insulator-metal nanostructure. The whole thickness of the absorber is just 60 nm, which is less than λ/12. The ultra-thin semiconductor resonators are used as the photonic coupling elements. The plasmonic metal layer with the thickness about 15 nm simultaneously acts as the transmission cancel layer and the plasmon source for resonant coupling with the optical near-field energy. The combined semiconductor resonators and the thin metal film produce strong electromagnetic field coupling and confinement effects, which mainly contribute to the efficient light trapping for the multi-band strong light absorption. The semiconductors such as Si, GaAs, and Ge are confirmed with the capability to show high light absorption via this simple hybrid metal-semiconductor resonant system. These features pave new insight on ultra-thin semiconductor absorbers and hold potential applications for optoelectronics such as nonlinear optics, hot-electron excitation and extraction, and the related devices.

  相似文献   

16.
Wang  Jicheng  Niu  Yuying  Liu  Dongdong  Hu  Zheng-Da  Sang  Tian  Gao  Shumei 《Plasmonics (Norwell, Mass.)》2018,13(2):609-616

We propose a plasmonic structure based on the metal-insulator-metal waveguide with the side-coupled isosceles trapezoid cavities. Both of the structures based on the side-coupled trapezoid cavities separated or connected with waveguides can realize the plasmon-induced transparency (PIT). By adjusting the structure parameters, the off-to-on PIT response can be tunably achieved. The coupled mode theory (CMT) method is used to study the PIT phenomenon and explain the transmission characteristics. This work may provide a potential way for designing highly integrated photonic devices.

  相似文献   

17.
In this paper, a nanoscale three-dimensional plasmonic waveguide (TDPW), created by depositing an Ag stripe on a SiO2 layer with an Ag substrate, is introduced and theoretically investigated at visible and telecom wavelengths. By applying the effective index method and finite-difference time-domain numerical simulations, the authors find that the propagation properties of surface plasmon polaritons (SPPs) in the TDPW, including the propagation length and beam width, are mainly decided by the core (the SiO2 layer just under the Ag stripe) itself, due to the much stronger localization of SPPs in the core than in the two side claddings (the SiO2 layer without the covered Ag stripe). And propagating SPPs in the TDPW are strongly confined in the core region, even with a very small waveguide cross section. Furthermore, based on the stronger localization of propagation SPPs in the TDPW, two kinds of bending waveguides, oblique bending and 90° circular bending waveguides, are also investigated. For wavelength of 1550 nm, the 90° circular bending guide with a minimum radius as small as 2.6 μm show nearly zero radiation loss, even with a small waveguide cross section of 70?×?80 nm2. The proposed TDPW is suitable for planar integration and provides a possible way for constructing various nanoscale counterparts of conventional integrated devices such as splitter, resonator, sensor, and optical switch.  相似文献   

18.
Surface plasmon polariton (SPP) waveguides formed by coupled plasmonic cavities on metallic Moire surfaces have been investigated both experimentally and numerically. The Moire surface, fabricated by interference lithography, contains periodic arrays of one-dimensional cavities. The coupling strength between the cavities has been controlled by changing the periodicities of the Moire surface. The ability to control the coupling strength allows us to tune the dispersion and the group velocity of the plasmonic coupled cavity mode. Reflection measurements and numerical simulation of the array of SPP cavities have shown a coupled resonator type plasmonic waveguide band formation within the band gap. Coupling coefficients of cavities and group velocities of SPPs are calculated for a range of cavity sizes from weakly coupled regime to strongly coupled regime.  相似文献   

19.
Zheng  Mingfei  Xiong  Cuixiu  Zhao  Mingzhuo  Xu  Hui  Zhang  Baihui  Xie  Wenke  Li  Hongjian 《Plasmonics (Norwell, Mass.)》2019,14(6):1659-1668

A plasmonic nanodevice in end-coupled sectorial-ring cavity waveguide is reported, and the spectral characteristic of the novel system is studied. It is built with sectorial-ring cavity resonator end-coupled to plasmonic waveguide, and  this resonator is an oversize central angle (θ), alterable symmetry plane angle (ϕ), and fixed radius and gap, which has the advantages of forming split-ring-like, realizing asymmetrical cavity, and achieving spectral tunability and selectivity. The two-dimensional simulation indicates that the extra noninteger and traditional integer resonance modes are excited in the novel system, and the noninteger resonance modes are not achievable for the circular-ring cavity waveguide. It displays that these resonance modes of the novel system are drastically affected by changing the position of ϕ, which has different changes on maximum transmittances but is almost unchanged on resonance wavelengths. Importantly, the multiple resonance modes are highly sensitive to ϕ, and the proper modes are significantly enhanced, weakened, excited, or disappeared. It also displays that these resonance modes of the novel system are efficiently affected by changing the size of θ, which has similar and different influences on resonance wavelengths and maximum transmittances. This work shows that the method helps in designing accurately the transmission spectrum with prospective modes in nanophotonics, and the structure facilitates for realization of tunable and selective multichannel nanofilter or nanosensor in integration.

  相似文献   

20.
Zhang  Zhaojian  Yang  Junbo  Han  Yunxin  He  Xin  Huang  Jie  Chen  Dingbo 《Plasmonics (Norwell, Mass.)》2020,15(3):761-767

Plasmonic nanocircuits can deliver light in subwavelength scale, however, require state-of-the-art fabrication process due to the ultra-small footprints. Here, we introduce direct coupling strategy based on metal-insulator-metal (MIM) waveguide systems to reduce the system loss as well as the fabrication difficulty and increase the structural stability. Following this strategy, the coupling between the input waveguide and square ring resonator (SRR) can be realized via an aperture, and for the coupling between SRRs, the metal gap can be removed. The numerical results show that such direct coupling can produce similar effects with conventional indirect coupling in MIM waveguide systems, and the physics mechanism behind as well as influences of geometric parameters on transmission spectrum is also investigated. This work provides a simpler approach to realize on-chip plasmonic nanodevices, such as filters, sensors, and optical delay lines, in practice.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号