首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moaied  M.  Ostrikov  K.  Palomba  S. 《Plasmonics (Norwell, Mass.)》2021,16(4):1261-1267

Understanding the mechanisms of light–matter interactions in ultra-small plasmonic nanoparticles (USNP) represents a major challenge because of the importance of size dependence and quantum effects. The plasmon resonance in such small metallic nanoparticles (< 5 nm) exhibits substantial deviation from classical theory predictions, with evident frequency shifts to a higher energy. This is due to the quantum nature of the free charge carriers and the dynamic response of metallic nanoparticle to the self-consistent electromagnetic fields. Such phenomena have so far been poorly understood in experiments while classical theory has mostly focused on nanostructures and sidestepped the size dependence. Here we report a quantum mechanical model of the metal permittivity to describe the USNP behaviour and experimental evidence. The proposed non-local quantum model of the permittivity for the propagation of plasmon waves in quantum-confined silver nanoparticles has no size limitations in the UNSP range.

  相似文献   

2.
In this paper, a rough silver core-shell nanoparticle with strong electric field enhancement in the vicinity of a bumpy structure on the silver core-shell surface is reported. A dipolar plasmonic mode of the silver nanoshell is investigated by using the quasi-static approach and plasmon hybridization theory, which analytical results identify the electric field enhancement spectra in which the enhancement is optimized. As the silver shell thickness is small, the hot spots play an important role in the plasmonic field enhancement. In addition, the deposition of a rough silver shell can generate a stronger near-field enhancement near the silver surface which is more desirable than that of a smooth silver shell for sensitive detection based on SPR and surface enhanced Raman scattering (SERS). The plasmonic field enhancement of a bumpy silver core-shell nanoparticle permits the detection and characterization of bovine serum albumin (BSA) protein molecule and hemoglobin solution with a high sensitivity.  相似文献   

3.
The labeling strategy with gold nanoparticles for the conventional surface plasmon resonance (SPR) signal enhancement has been frequently used for the sensitive determination of small molecules binding to its interaction partners. However, the influence of gold nanoparticles with different size and shape on SPR signal is not known. In this paper, three kinds of gold nanoparticles, namely nanorods, nanospheres, and nanooctahedrons with different size, were prepared and used to investigate their effects on the conventional SPR signal at a fixed excitation wavelength 670 nm. It was found that the SPR signal (i.e., resonant angle shift) was varied with the shapes and sizes of gold nanoparticles in suspension at a fixed concentration due to their different plasmon absorbance bands. For gold nanorods with different longitudinal absorbance bands, three conventional SPR signal regions could be clearly observed when the gold nanorod suspensions were separately introduced onto the SPR sensor chip surface. One region was the longitudinal absorbance bands coinciding with or close to the SPR excitation wavelength that suppressed the SPR angle shift. The second region was the longitudinal absorbance bands at 624 to 639 and 728 to 763 nm that produced a moderate increase on the SPR resonant angle shift. The third region was found for the longitudinal absorbance bands from 700 to 726 nm that resulted in a remarkable increase in the SPR angle shift responses. This phenomenon can be explained on the basis of calculation of the correlation of SPR angle shift response with the gold nanorod longitudinal absorbance bands. For nanospheres and nanooctahedrons, the SPR angle shift responses were found to be particle shape and size dependent in a simple way with a sustaining increase when the sizes of the nanoparticles were increased. Consequently, a guideline for choosing gold nanoparticles as tags is suggested for the SPR determination of small molecules with binding to the immobilized interaction partners.  相似文献   

4.
5.
Li  Boyao  Wu  Meng  Liu  Xinyu  Zhou  Guiyao  Liu  Jiantao  Hou  Zhiyun  Xia  Changming 《Plasmonics (Norwell, Mass.)》2019,14(2):383-387
Plasmonics - Microstructured optical fiber can be used as polarized filters by filling the metal into the air holes in cladding to generate surface plasmon resonance. In this paper, we present a...  相似文献   

6.
The surface plasmon energy in spherical silver nanoparticles embedded in silica host matrix depends on the size and temperature of the nanoparticles. The dependences of the surface plasmon energy were studied for silver nanoparticles in the size range 11?C30?nm and in the temperature interval 293?C650?K. As the size of the nanoparticles decreases or the temperature increases, the surface plasmon resonance shifts to red. When the size of the nanoparticles decreases, the scattering rate of the conduction electrons increases, which results in the nonlinear red shift of the surface plasmon resonance. The red shift with temperature is linear for larger nanoparticles and becomes nonlinear for smaller ones. As the temperature of the nanoparticles increases, the volume thermal expansion of the nanoparticles leads to the red shift of the surface plasmon resonance. The thermal volume expansion coefficient depends on the size and temperature. It increases with a decrease of the nanoparticle size and an increase of the temperature.  相似文献   

7.
It is demonstrated that the sensitivity of surface plasmon resonance phase-interrogation biosensor can be enhanced by using silver nanoparticles. Silver nanoparticles were fabricated on silver films by using thermal evaporation. Sizes of silver nanoparticles on silver thin film can be tuned by controlling the deposition parameters of thermal evaporation. By using surface plasmon resonance heterodyne interferometey to measure the phase difference between the p and s polarization of incident light, we have demonstrated that sensitivity of glucose detection down to the order of 10−8 refractive index units can be obtained.  相似文献   

8.

Noble metal nanoparticles (NPs) have attracted much attention due to their unique physical and chemical properties such as tunable surface plasmonics, high-efficiency electrochemical sensing, and enhanced fluorescence. We produced two biosensor chips consisting of Ag@Au bimetallic nanoparticles (BNPs) on a carbon thin film by simple RF-sputtering and RF-plasma-enhanced chemical vapor co-deposition. We deposited Au NPs with average size of 4 nm (Au1 NPs) or 11 nm (Au2 NPs) on a sensor chip consisting of Ag NPs with mean size of 15 nm, and we investigated the effect of shell size (Au NPs) on the chemical activities of the resulting Ag@Au1 BNPs and Ag@Au2 BNPs. We estimated the average size and morphology of Ag@Au BNPs by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. X-ray diffraction (XRD) patterns revealed that Ag NPs and Au NPs had face-centered cubic (FCC) structure. We studied aging of the biosensor chips consisting of Ag@Au BNPs by localized surface plasmon resonance (LSPR) spectroscopy for up to 3 months. UV–visible aging of the prepared samples indicated that Ag@Au1 BNPs, which corresponded to Ag NPs covered with smaller Au NPs, were more chemically active than Ag@Au2 BNPs. Furthermore, we evaluated changes in the LSPR absorption peaks of Ag@Au1 BNPs and bare Ag NPs in the presence of a DNA primer decamer at fM concentrations, to find that Ag@Au1 BNPs were more sensitive biosensor chips within a short response time as compared to bare Ag NPs.

  相似文献   

9.
Plasmonics - In this study, we achieved an enhancement of the transmission surface plasmon resonance (T-SPR) intensity by depositing silver nanoparticles (AgNPs) onto a gold grating substrate. The...  相似文献   

10.

Colloidal gold nanoparticles (AuNPs) have been extensively investigated as amplification tags to improve the sensitivity of surface plasmon resonance (SPR) biosensors. When using the so-called AuNP-enhanced SPR technique for DNA detection, the density of single-stranded DNA (ssDNA) on both the AuNPs and planar gold substrates is of crucial importance. Thus, in this work, we carried out a systematical study about the influence of surface ssDNA density onto the hybridization behavior of various DNA-modified AuNPs (DNA-AuNPs) with surface-attached DNA probes by using surface plasmon resonance spectroscopy. The lateral densities of the ssDNA on both the AuNPs and planar gold substrates were controlled by using different lengths of oligo-adenine sequence (OAS) as anchoring group. Besides SPR measurements, the amount of the captured DNA-AuNPs after the hybridization was further identified via atomic force microscope (AFM). SPR and AFM results clearly indicated that a higher ssDNA density on either the AuNPs or the gold substrates would give rise to better hybridization efficiency. Moreover, SPR data showed that the captured DNA-AuNPs could not be removed from SPR sensor surfaces using various dehybridization solutions regardless of surface ssDNA density. Consequently, it is apparent that the hybridization behavior of DNA-AuNPs was different from that of solution-phase ssDNA. Based on these data, we hypothesized that both multiple recognitions and limited accessibility might account for the hybridization of DNA-AuNPs with surface-attached ssDNA probes.

  相似文献   

11.
Nanotechnology is gaining enormous attention as the most dynamic research area in science and technology. It involves the synthesis and applications of nanomaterials in diverse fields including medical, agriculture, textiles, food technology, cosmetics, aerospace, electronics, etc. Silver nanoparticles (AgNPs) have been extensively used in such applications due to their excellent physicochemical, antibacterial, and biological properties. The use of plant extract as a biological reactor is one of the most promising solutions for the synthesis of AgNPs because this process overcomes the drawbacks of physical and chemical methods. This review article summarizes the plant-mediated synthesis process, the probable reaction mechanism, and the colorimetric sensing applications of AgNPs. Plant-mediated synthesis parameters largely affect the surface plasmon resonance (SPR) characteristic due to the changes in the size and shape of AgNPs. These changes in the size and shape of plant-mediated AgNPs are elaborately discussed here by analyzing the surface plasmon resonance characteristics. Furthermore, this article also highlights the promising applications of plant-mediated AgNPs in sensing applications regarding the detection of mercury, hydrogen peroxide, lead, and glucose. Finally, it describes the future perspective of plant-mediated AgNPs for the development of green chemistry.  相似文献   

12.
Karimi  S.  Moshaii  A.  Abbasian  S.  Nikkhah  M. 《Plasmonics (Norwell, Mass.)》2019,14(4):851-860
Plasmonics - Study of surface plasmon resonance for small nanoparticles (R &lt; 10 nm) has many theoretical complexities due to lack of a simple quantitative model for describing...  相似文献   

13.
Electron beam imaging is a common technique used for characterizing the morphology of plasmonic nanostructures. During the imaging process, the electron beam interacts with traces of organic material in the chamber and produces a well-know layer of amorphous carbon over the specimen under investigation. In this paper, we investigate the effect of this carbon adsorbate on the spectral position of the surface plasmon in individual gold nanoparticles as a function of electron exposure dose. We find an optimum dose for which the plasmonic response of the nanoparticle is not affected by the imaging process.  相似文献   

14.
Plasmonics - A simple, fast, and sensitive colorimetric technique for determination of laccase activity using dopamine (DA) induced growth of colloidal gold nanoparticles is proposed. It was found...  相似文献   

15.
We have demonstrated that plasma treatments of silver nanoparticles bring about blueshift and narrowing in their localized surface plasmon resonance. Surface-enhanced Raman scattering analysis revealed that hydrocarbons adsorbed on silver surfaces were removed effectively by plasma exposure. It was found that the decrease in Raman line intensity for hydrocarbons was correlated well with the blueshift. Our findings indicate that one of the most important factors for remarkable differences in plasmon resonance wavelengths and line widths reported for the silver nanoparticles supported on substrates between most of the experimental data and calculations by Mie’s theory is due to the impurity adsorption on silver surfaces.  相似文献   

16.
This paper analyzes how dual-mode surface plasmon resonance sensors can be further improved if one were to introduce small (∼20 nm) gaps in the film surface. First, a figure of merit, the sensor’s limit of detection (LOD), is defined in order to optimize the design of the nano-gap sensor. Secondly, the LOD of this design is compared with that of an optimized planar dual-mode design. Through this analysis, it is shown that the LOD of the planar sensor can be improved upon by around a factor of 7 when compared with the nano-gap-enhanced design. Furthermore, with the nano-gap design, the lower wavelength plasmon mode demonstrates remarkably improved selectivity when compared with the conventional sensor. In order to explain these results, the dispersion of each plasmon mode along with the electromagnetic field profiles are modeled and analyzed.  相似文献   

17.
Spectroscopic study of photoluminescence (PL) enhancement due to the coupling of the light emitters in InGaN/GaN multiple quantum wells (MQWs) with the localized surface plasmon (LSP) resonance on silver (Ag) nanoparticles (NPs) is performed using the confocal microscopy and scanning near-field optical microscopy (SNOM) techniques. The paper is focused on revealing the emission enhancement due to coupling with a single metal nanoparticle. The enhancement is confirmed by time-resolved study of differential transmission (DT). The enhancement suppression caused by potential fluctuations due to the variations of indium content and quantum well (QW) width is also studied. A strong photoexcitation intensity dependence of the emission enhancement due to spectral runaway of the MQW emission from the resonance as carrier density increases is observed both in spatially integrated spectra and in the vicinity of a single nanoparticle.  相似文献   

18.
Plasmonics - Laser-driven hybridization of a collective surface plasmon mode of a monolayer of silver nanoparticles has been studied as a function of irradiation power density. Two collective...  相似文献   

19.
20.
A design of a TiO2 core and Ag shell spherical nanoparticle is theoretically presented. The nanoparticles display double dipole plasmonic resonance peaks: one located at the ultraviolet range, the other is widely tunable from the visible to the near infrared region. The tunability can be easily controlled by varying the sizes of the core and the shell. The near field patterns of the double plasmonic resonance peaks are analyzed, and the dipole resonance modes for those two peaks are confirmed for the suitable core–shell sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号