首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth regulators and carbohydrates are key regulatory factors that affect somatic embryogenesis. Carbohydrates serve as energy and carbon sources, osmotica and osmoprotectants and are important signal molecules. Most information about the role of carbohydrates in somatic embryogenesis in Norway spruce has been obtained with embryos grown on semi-solid media. The aim of the present study was to gain a better understanding of the effects of exogenous carbohydrates through modification of medium components (sugars) and physical state (liquid and semi-solid media). Rafts, floating on liquid medium, were used to allow precise manipulation of carbohydrate availability, though it did not result in the highest embryo yields. Our results indicate the following for Norway spruce somatic embryo development: (1) overall carbohydrate dynamics in somatic embryos cultivated on liquid or semi-solid media were similar; (2) the total carbohydrate content, however, was higher in somatic embryos cultivated on liquid media; (3) sucrose was present in somatic embryos even when they matured on sucrose-free media; (4) sucrose content in liquid sucrose-supplemented maturation media decreased sharply during a 1-wk subculture interval; (5) the accumulation of the raffinose family oligosaccharides during desiccation was determined independently of previous sugar supply; and (6) a decrease of sucrose and an increase of hexoses contents accompanied somatic embryo germination.  相似文献   

2.
3.
Somatic embryo quality is still a problem for many researchers. To improve the efficiency of germination, special procedures are used, such as partial drying of somatic embryos at high relative humidity or desiccation in the presence of supersaturated solutions of salt. In this work, cotyledonary somatic embryos of Norway spruce (Picea abies) and Serbian spruce (P. omorika) were placed on culture media (ME or BM-5) to germinate. We found that after 4 weeks of incubation on these media, hypocotyl and radicle growth of control (non-dried) somatic embryos of both species was not adequate to yield seedlings able to acclimatize to greenhouse conditions. Therefore, somatic embryos were partly dried at relative humidity of 97 % or desiccated at relative humidity of 79 %, for 2 or 3 weeks, and then placed on the Margara (ME) medium. Partial drying of somatic embryos at the higher relative humidity (97 %) enabled an improvement of radicle growth of germinating somatic embryos in both species. The highest conversion rate (45 %) was obtained for embryos of Norway spruce maintained for 2 weeks at relative humidity of 97 %. This treatment contributed to the improvement of germination and conversion efficiency of somatic embryos of Norway spruce, regardless of the drying period. Improved radicle growth facilitated development of better quality seedlings of this spruce species. In Serbian spruce, we did not obtain seedlings of sufficient quality, due to poor hypocotyl growth. Desiccation at humidity of 79 % for 3 weeks proved to be lethal to somatic embryos of both species.  相似文献   

4.
Summary We investigated abscisic acid (ABA) metabolism among Norway and white spruce somatic embryo cultures which exhibited differences in maturation response when placed on racemic abscisic acid [(±)-ABA]. Differences in metabolic rate among the spruce genotypes could affect the ABA pool available for the maturation process, and might therefore be responsible for the differences in maturation response. The production of cotyledonary (stage 3) somatic embryos in cultures (genotypes) of Norway spruce (PA86:26A and PA88:25B) and of white spruce (WS1F cryoD and WS46) was compared. In each species pair one of the two genotypes failed to show stage 3 embryo development (respectively, PA88:25B and WS46). The investigation of ABA metabolism of each species pair showed that no substantial differences in ABA consumption or in the production of metabolites occurred. In each case ABA was metabolized to phaseic acid and dihydrophaseic acid over the 42-day culture period, metabolites were recoverable from the agar-solidified medium, and the sum of residual ABA and metabolites were equivalent to the ABA initially supplied. The results indicate that the process of ABA metabolism occurs essentially independently of somatic embryo maturation. NRCC no. 37345.  相似文献   

5.
A new and simple protocol has been developed and standardized for direct somatic embryogenesis and plant regeneration from aseptic seedlings derived from immature Brassica juncea seeds. Depending on the age of immature seeds and nutrient media, in vitro occurrence of embryogenesis and the number of embryos from each seedling have varied greatly. The largest number of somatic embryos, producing 12.7 embryos per seedlings, have been developed by seedlings obtained from immature seeds collected after 21 days of pollination (DAP). Effect of different nutrient media [Gamborg (B5), Murashige and Skoog (MS) and Linsmaier and Skoog (SH)] and carbon sources (fructose, glucose, maltose and sucrose) were assessed to induce somatic embryos and the maximum response were achieved on Nitsch culture medium fortified with sucrose (3% w/v) followed by fructose and maltose. The somatic embryo converted into complete plantlets within 04-weeks of culture on Nitsch medium containing half-strength of micro and macro salts. The regenerated plantlets were successfully established in soil with 90% survival rate. The acclimated plants were subsequently transferred to field condition where they grew normally without any phenotypic differences. Genetic stability of B. juncea plants regenerated from somatic embryos were confirmed by inter-simple sequence repeat (ISSR)-PCR analysis and flow cytometry. No significant difference in ploidy level and ISSR banding pattern were documented between somatic embryo’s plants and control plants grown ex vitro.  相似文献   

6.
Rode C  Lindhorst K  Braun HP  Winkelmann T 《Planta》2012,235(5):995-1011
In this study, the proteome structures following the pathway in somatic embryogenesis of Cyclamen persicum were analysed via high-resolution 2D-SDS-PAGE with two objectives: (1) to identify the significant physiological processes during somatic embryogenesis in Cyclamen and (2) to improve the maturation of somatic embryos. Therefore, the effects of maturation-promoting plant growth regulator abscisic acid (ABA) and high sucrose levels on torpedo-shaped embryos were investigated. In total, 108 proteins of differential abundance were identified using a combination of tandem mass spectrometry and a digital proteome reference map. In callus, enzymes related to energy supply were especially distinct, most likely due to energy demand caused by fast growth and cell division. The switch from callus to globular embryo as well as from globular to torpedo-shaped embryo was associated with controlled proteolysis via the ubiquitin-26S proteasome pathway. Storage compound accumulation was first detected 21 days after transfer to plant growth regulator (PGR)-free medium in early torpedo-shaped embryos. Increase in abundance of auxin-amidohydrolase during embryogenesis suggests a possible increase in auxin release in the late embryo stages of Cyclamen. A development-specific isoelectric point switch of catalases has been reported for the first time for somatic embryogenesis. Several proteins were identified to represent markers for the different developmental stages analysed. High sucrose levels and ABA treatment promoted the accumulation of storage compounds in torpedo-shaped embryos. Additionally, proteins of the primary metabolic pathways were decreased in the proteomes of ABA-treated embryos. Thus, ABA and high sucrose concentration in the culture medium improved maturation and consequently the quality of somatic embryos in C. persicum.  相似文献   

7.
Somatic embryogenesis was induced in hypocotyl explants of geranium (Pelargonium × hortorum) cultured on media supplemented with various concentrations of N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (thidiazuron). In less than 2 weeks, somatic embryos were observed in treatments containing levels of thidiazuron (TDZ) ranging from 0.2 to 1.0 micromolar. The use of N6-benzylaminopurine in combination with indole-3-acetic acid also evoked embryogenesis, but the efficiency of somatic embryo production was significantly lower than that obtained with TDZ. Hypocotyl culture for only 2 days on TDZ-supplemented medium before transfer to a basal medium was sufficient for inducing somatic embryogenesis. This distinction between the induction and expression of embryogenesis may provide an experimental system for studying the developmental biology of somatic embryogenesis. Substitution of the auxin-cytokinin requirement for the induction of somatic embryogenesis by TDZ suggests the possibility of a novel mode of its action by modulation of endogenous growth regulators.  相似文献   

8.
Summary Somatic embryogenesis and plantlet formation have been achieved from cultured mature zygotic embryos of blue spruce (Picea pungens Engelman.). The effect of three basal media LP, LM, and BLG, all used at half-strength, was tested at the induction phase. LM medium induced somatic embryogenesis to a higher extent than LP whereas BLG did not produce any embryonal-suspensor mass representing stage 1 somatic embryos. The embryonal-suspensor mass was induced on a wide range of auxin/cytokinin ratios. However, media containing either 2 M NAA and 10 M BA, or 10 M NAA and 5 M BA produced somatic embryos that gave the highest frequency of plantlets. The level of ABA required in the maturation medium for somatic embryos to mature properly varied with the auxin/cytokinin levels in the induction medium on which the somatic embryos were derived. Inclusion of AgNO3 (10 – 100 M) in the induction medium reduced somatic embryogenesis and embryo conversion.Abbreviations NAA naphthalene-acetic acid - BA N6-benzylaminopurine - ABA abscisic acid  相似文献   

9.
A genetic transformation method via secondary somatic embryogenesis was developed for alfalfa (Medicago sativa L.). Mature somatic embryos of alfalfa were infected by Agrobacterium strain GV3101 containing the binary vector pCAMBIA2301. pCAMBIA2301 harbors the uidA Gus reporter gene and npt II acts as the selectable marker gene. Infected primary embryos were placed on SH2K medium containing plant growth regulators to induce cell dedifferentiation and embryogenesis under 75 mg/L kanamycin selection. The induced calli were transferred to plant medium free of plant growth regulators for embryo formation while maintaining selection. Somatic embryos germinated normally upon transfer to a germination medium. Plants were recovered and grown in a tissue culture room before transfer to a greenhouse. Histochemical analysis showed high levels of GUS activity in secondary somatic embryos and in different organs of plants recovered from secondary somatic embryos. The presence and stable integration of transgenes in recovered plants were confirmed by polymerase chain reaction using transgene-specific primers and Southern blot hybridization using the npt II gene probe. The average transformation efficiency achieved via secondary somatic embryogenesis was 15.2%. The selection for transformation throughout the cell dedifferentiation and embryogenic callus induction phases was very effective, and no regenerated plants escaped the selection procedure. Alfalfa transformation is usually achieved through somatic embryogenesis using different organs of developed plants. Use of somatic embryos as explants for transformation can avoid the plant development phase, providing a faster procedure for introduction of new traits and facilitates further engineering of previously transformed lines.  相似文献   

10.
A method for secondary somatic embryogenesis was developed on embryos derived from embryogenic callus formed on Hepatica nobilis seedlings. Somatic embryogenesis (SE) was induced on seedlings (on the hypocotyl and epicotyl parts) grown on the Murashige and Skoog (1962) medium (MS) supplemented with 1 µM naphthaleneacetic acid (NAA), and/or 0.1 µM 6-benzyladenine (BA) and on medium without plant growth regulators (PGR). The best response of embryogenic callus formation was observed on the medium containing 1 µM NAA alone or with 0.1 µM BA. Individual somatic embryos, formed on embryogenic callus on the medium without PGR (MS0), at heart, torpedo and cotyledonary stage, were transferred to the media where secondary somatic embryo formation and development into plantlets occurred. Although the most efficient repetitive cycles of secondary SE were recorded for all stages of somatic embryos (heart, torpedo, cotyledonary) on the MS0 medium (77.8–87.4 %), secondary somatic embryos were also obtained on all media supplemented with cytokinins. The best rate of somatic embryos germination was achieved on MS media with 0.2 µM NAA and 2 µM BA, and 0.1 µM NAA and 1 µM BA (48.8–52.0 %) when more mature embryos (cotyledonary stage) were used. Plantlets grown from somatic embryos were successfully acclimatized to greenhouse conditions.  相似文献   

11.
《Plant science》1986,45(3):215-222
Opium poppy (Papaver somniferum L.) tissue cultures were examines by thin-layer and high performance liquid chromatography (TLC; HPLC) for qualitative and quantitative changes in morphinane alkaloid content during somatic embryogenesis. Somatic embryos were examined at weekley intervals over a 7-week induction and maturation period. Thebaine was the only morphinane positively identified in tissue extracts and in spent growth media. Neither morphine nor codeine were produced in detectable quantities during somatic embryogenesis. Production of thebaine was developmentally regulated, gradually increasing following the removal of auxin from the culture medium. Accumulation of this alkaloid in the growth medium paralleled its appearance in somatic embryos. Alkaloid synthesis in somatic embryos appeared to require a minimum level of organization that could also be disrupted by the spontaneous loss of embryogenic potential that was observed in some culture lines.  相似文献   

12.
Somatic embryogenesis is a powerful biotechnological tool for the mass production of economically important cultivars. Due to the cellular totipotency of plants, somatic cells under appropriate conditions are able to develop a complete functional embryo. During the induction of somatic embryogenesis, there are different factors involved in the success or failure of the somatic embryogenesis response. Among these factors, the origin of the explant, the culture medium and the in vitro environmental conditions have been the most studied. However, the secretion of molecules into the media has not been fully addressed. We found that the somatic embryogenesis of Coffea canephora, a highly direct embryogenic species, is disrupted by the metabolites secreted from C. arabica, a poorly direct embryogenic species. These metabolites also affect DNA methylation. Our results show that the abundance of two major phenolic compounds, caffeine and chlorogenic acid, are responsible for inhibiting somatic embryogenesis in C. canephora.  相似文献   

13.
Picea koraiensis, called Korean spruce, is an evergreen tree and found mostly in northeast Asia. In this study, plant regeneration via somatic embryogenesis from open-pollinated immature zygotic embryos of nine genotypes of elite trees was established. Immature zygotic embryos were cultured onto RJW medium modified from 505 medium with 21.48 μM NAA, 2.22 μM BA, and 2.32 μM KT. The average frequency for all nine genotypes was 74.2%. Embryogenic calluses of the nine genotypes of elite trees were subcultured on RJW basal medium containing 8.06 μM NAA, 1.11 μM BA, and 1.16 μM kinetin. The calluses of three lines, 3#, 9#, and 2#, were actively proliferated but others were not. Somatic embryogenesis was induced from the embryogenic callus in genotypes of 3#, 9#, and 2# on RJW medium with ABA and 60 g l−1 sucrose. Cotyledonary somatic embryos were subjected to a drying process. The drying of embryos by uncapping the culture bottle for 5 days on a clean bench resulted in a high frequency of germination of somatic embryos (87% in RJW medium). However, plantlet conversion from germinated embryos was greatly reduced and the optimal medium for plant conversion was 1/2 WPM or 1/2 BMI medium. In conclusion, we have, for the first time, established a plant regeneration system via somatic embryogenesis in the Korean spruce, which can be applied for rapid micropropagation of elite trees.  相似文献   

14.
Immature cotyledons of open-pollinated seeds from five walnut (Juglans regia L.) cultivars were excised from fruits at 6–11 weeks after full pistillate bloom and grown on a sequence of media to induce somatic embryogenesis. Globular, heart, cotyledonary and complete somatic embryos were obtained. Embryogenic cultures were maintained for more than a year by repetitive embryogenesis in which the roots, cotyledons and hypocotyls of somatic embryos formed additional adventive somatic embryos. Mature somatic embryos required a cold treatment of 8–10 weeks at 2–4°C to overcome apical dormancy. Selected plantlets derived from these somatic embryos were grown to young plants in soil. In addition, somatic embryogenesis was induced in J. hindsii (Jeps.), Jeps., and in Pterocarya sp., another member of the Juglandaceae.  相似文献   

15.
An efficient in vitro plant regeneration system was established through somatic embryogenesis for Anoectochilus elatus Lindley, an endangered jewel orchid. Direct somatic embryogenesis was achieved from nodal explants (17.4 embryos per explant with 63.4% response) on Mitra medium supplemented with Morel vitamins, thidiazuron (4.54 µM) and ∞-naphthaleneacetic acid (2.69 µM). Simultaneously, a protocol was developed for indirect somatic embryogenesis from internodal explant, produced embryogenic calli and embryos (31.3 embryos with 76.4% response) on same medium amended with 50 mg/L peptone and 5% coconut water. Both types of embryogenic pathways, produced morphologically similar globular embryos in the form of protocorm like bodies and successfully germinated on hormone free Mitra medium supplemented with Morel vitamins. Morpho-histological investigation of the embryo revealed the initiation and developmental features of somatic embryos. In vitro regenerated plantlets were successfully established from heterotrophic to a photoautotrophic stage by reducing the nutrient content in culture media, adjusting temperature and humidity through three step method. During the process, no morphological and physiological abnormalities were observed. Hardened plantlets were successfully acclimatized at poly tunnel chamber with 95% of survival rate. Further, inter simple sequence repeats (ISSRs) molecular markers were used to analyse the genetic homogeneity of regenerated plants. Analysis with this method showed that the homogeneity is comparatively higher in direct somatic embryo regenerated plants (94.22%) as compared to plants elevated from an indirect somatic embryo (93.05%). The present study provides morpho-histological and genetically stable plants for germplasm conservation and further utility of this endangered jewel orchid.  相似文献   

16.

Background

Somatic embryogenesis in conifer species has great potential for the forestry industry. Hence, a number of methods have been developed for their efficient and rapid propagation through somatic embryogenesis. Although information is available regarding the previous process-mediated generation of embryogenic cells to form somatic embryos, there is a dearth of information in the literature on the detailed structure of these clusters.

Methodology/Principal Findings

The main aim of this study was to provide a more detailed structure of the embryogenic tissue clusters obtained through the in vitro propagation of the Norway spruce (Picea abies (L.) Karst.). We primarily focused on the growth of early somatic embryos (ESEs). The data on ESE growth suggested that there may be clear distinctions between their inner and outer regions. Therefore, we selected ESEs collected on the 56th day after sub-cultivation to dissect the homogeneity of the ESE clusters. Two colourimetric assays (acetocarmine and fluorescein diacetate/propidium iodide staining) and one metabolic assay based on the use of 2,3,5-triphenyltetrazolium chloride uncovered large differences in the metabolic activity inside the cluster. Next, we performed nuclear magnetic resonance measurements. The ESE cluster seemed to be compactly aggregated during the first four weeks of cultivation; thereafter, the difference between the 1H nuclei concentration in the inner and outer clusters was more evident. There were clear differences in the visual appearance of embryos from the outer and inner regions. Finally, a cluster was divided into six parts (three each from the inner and the outer regions of the embryo) to determine their growth and viability. The innermost embryos (centripetally towards the cluster centre) could grow after sub-cultivation but exhibited the slowest rate and required the longest time to reach the common growth rate. To confirm our hypothesis on the organisation of the ESE cluster, we investigated the effect of cluster orientation on the cultivation medium and the influence of the change of the cluster’s three-dimensional orientation on its development. Maintaining the same position when transferring ESEs into new cultivation medium seemed to be necessary because changes in the orientation significantly affected ESE growth.

Conclusions and Significance

This work illustrated the possible inner organisation of ESEs. The outer layer of ESEs is formed by individual somatic embryos with high metabolic activity (and with high demands for nutrients, oxygen and water), while an embryonal group is directed outside of the ESE cluster. Somatic embryos with depressed metabolic activity were localised in the inner regions, where these embryonic tissues probably have a very important transport function.  相似文献   

17.
Summary Efficient in vitro propagation of Ceropegia candelabrum L. (Asclepidaceae) through somatic embryogenesis was established. Somatic embryogenesis depended on the type of plant growth regulators in the callus-inducing medium. Friable callus, developed from leaf and internode explants grown on Murashige and Skoog (MS) medium supplemented with 4.52μM2,4-dichlorophenoxyacetic acid (2,4-D), underwent somatic embryogenesis. Compared to solid media, suspension culture was superior and gave rise to a higher number of somatic embryos. Transfer of the friable callus developed on MS medium containing 4.52μM 2,4-D to suspension cultures of half- or quarter-strength MS medium with lower levels of 2,4-D (0.23 or 0.45 μM) induced the highest number of somatic embryos, which developed up to the torpedo stage. Somatic embryogenesis was asynchronous with the dominance of globular embryos. About 100 mg of callus induced more than 500 embryos. Upon transfer to quarter-strength MS agar medium without growth regulators, 50% of the somatic embryos underwent maturation and developed into plantlets. Plantlets acclimatized under field conditions with 90% survival.  相似文献   

18.
The role of proline in thidiazuron-induced somatic embryogenesis of peanut   总被引:7,自引:0,他引:7  
Summary Peanut seeds germinated on media supplemented with thidiazuron [TDZ: N-phenyl-N′-(1,2,3-thiadiazol-yl)urea], formed somatic embryos at the hypocotyledonary notch region by Day 35 of the culture period. Supplementation of the culture media with proline, thioproline, or glutamine reduced the total number of embryos formed, but the resulting embryos were larger, greener and had a more synchronous development than the regenerants formed on media containing TDZ alone. Analysis of the endogenous amino acid content of the germinating seeds during the induction phase of somatic embryogenesis revealed accumulation of proline to 6% of the dry seed weight. Concurrent with the emergence of the radicle, the proline concentration remained significantly elevated throughout the expression phase of embryogenesis. Several other amino acids including alanine, aspartate, asparagine, glutamate, glutamine, γ-aminobutyrate (GABA), hydroxyproline, isoleucine, threonine and valine accumulated to peak values approximately 10-fold higher than those of the controls. These results indicate that proline plays a key role in directing the route of TDZ-induced somatic embryogenesis and that TDZ effectively stimulates a cascade of metabolic events resulting in the production of specific metabolites, including amino acids, required for the regenerative process.  相似文献   

19.
Somatic embryogenesis offers many benefits for clonal propagation in large-scale plant production of conifers. A key rate-limiting step is the conversion from early-stage somatic embryos in pro-embryogenic masses (PEMs) to the maturation stage. Immature embryos in PEMs are present at different developmental stages, where some are unable to respond to the maturation treatment, thus limiting yields of mature embryos. Synchronization of early somatic embryo development in PEMs could greatly improve subsequent yields of mature embryos. A temporary immersion bioreactor designed for Norway spruce (Picea abies (L.) H.Karst.) was used in this study. Through a specific system for dispersion, connected tissue of PEMs, composed of immature embryos grown in liquid medium in the temporary immersion bioreactors or on solid medium as a control, was dispersed and redistributed in a more uniform spatial arrangement. It was demonstrated that development of mature embryos could be significantly stimulated by dispersion, compared to controls, in both medium types. Synchronization of maturation was evaluated by a statistical approach. The present study shows that the yield of mature embryos from dispersed PEMs was three to five times higher than that from non-dispersed controls in three of four cell lines of Norway spruce tested, both in bioreactors and on solid medium.  相似文献   

20.
Putrescine, spermidine, and spermine levels during somatic embryogenesis of interior spruce (Picea glauca x Picea engelmannii complex) were quantified On abscisic acid supplemented growth medium putrescine and spermidine levels increased two-fold coinciding with maturation of the early somatic embryos to globular embryos. Polyclonal antibodies raised against Escherichia coli arginine decarboxylase (ADC) and ornithine decarboxylase (ODC), following affinity purification specifically recognized spruce ADC and ODC, which corresponded to 85kD and 65kD bands on western blots of total protein extracts from embryogenic masses, Immunoassays using these antibodies showed increased ADC levels corresponding to embryo maturation while ODC levels remained the same. From these results it is concluded that polyamines are involved in the maturation of somatic embryos of interior spruce.Abbreviations ADC arginine decarboxylase - BSA bovine serum albumin - ODC ornithine decarboxylase - PBS phosphate buffered saline - PCA perchloric acid - SDS-PAGE sodium dodecyl sulfateporyacrylamide gel electrophoresis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号