首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Root segments from spinach (Spinacia oleracea L. cv. Jiromaru) seedlings form embryogenic callus (EC) that responded to exogenous GA(3) by accumulating a 31-kDa glycoprotein [BP31 or S. oleracea ribosome-inactivating protein (EC 3.2.2.22) (SoRIP1)] in association with the expression of embryogenic potential. Microsequencing of this protein revealed significant similarity with type 1 RIPs. We identified cDNAs for SoRIP1 and S. oleracea RIP2 (SoRIP2), a novel RIP having a consensus shiga/ricin toxic domain and performed a comparative analysis of the expression of SoRIPs during somatic embryogenesis. Western blotting and quantitative polymerase chain reaction analyses revealed that the expression of SoRIP1 in calli increased remarkably in association with the acquisition of embryogenic potential, although the expression in somatic embryos decreased moderately with their development. However, the expression of SoRIP2 in calli remained low and constant but increased markedly with the development of somatic embryos. Treatment of callus with GA(3) and/or ABA for 24 h, or with ABA for a longer period, failed to stimulate the expression of either gene. Immunohistochemistry showed that SoRIP1 preferentially accumulated in the proembryos and peripheral meristem of somatic embryos early in development. Appreciable expression of SoRIP2 was not detected in the callus, but intense expression was found in the epidermis of somatic embryos. These results suggest that the expression of spinach RIP genes is differentially regulated in a development-dependent fashion during somatic embryogenesis in spinach.  相似文献   

11.
12.
13.
《Gene》1998,216(2):233-243
Starch branching enzymes (SBE) which catalyse the formation of α-1,6-glucan linkages are of crucial importance for the quantity and quality of starch synthesized in plants. In maize (Zea mays L.), three SBE isoforms (SBEI, IIa and IIb) have been identified and shown to exhibit differential expression patterns. As a first step toward understanding the regulatory mechanisms controlling their expression, we isolated and sequenced a maize genomic DNA (−2190 to +5929) which contains the entire coding region of SBEI (Sbe1) as well as 5′-and 3′-flanking sequences. Using this clone, we established a complete genomic organization of the maize Sbe1 gene. The transcribed region consists of 14 exons and 13 introns, distributed over 5.7 kb. A consensus TATA-box and a G-box containing a perfect palindromic sequence, CCACGTGG, were found in the 5′-flanking region. Genomic Southern blot analysis indicated that two Sbe1 genes with divergent 5′-flanking sequences exist in the maize genome, suggesting the possibility that they are differentially regulated. A chimeric construct containing the 5′-flanking region of Sbe1 (−2190 to +27) fused to the β-glucuronidase gene (pKG101) showed promoter activity after it was introduced into maize endosperm suspension cells by particle bombardment.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号