首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clathrin-coated vesicles purified from bovine brain express adenosine A1 receptor binding activity. N6-Cyclohexyl[3H]adenosine [( 3H]CHA), an agonist for the A1 receptor, binds specifically to coated vesicles. High and low agonist affinity states of the receptor for the radioligand [3H]CHA with KD values of 0.18 and 4.4 nM, respectively, were detected. The high purity of coated vesicles was established by assays for biochemical markers and by electron microscopy. Binding competition experiments using agonists (N6CHA, N-cyclopentyladenosine, 5'-(N-ethylcarboxamido)adenosine, and N6-[(R)- and N6-[(S)-phenylisopropyl]adenosine) and antagonists (theophylline, 3-isobutyl-1-methylxanthine, and caffeine) confirmed the typical adenosine A1 nature of the binding site. This binding site presents stereospecificity for N6-phenylisopropyladenosine, showing 33 times more affinity for N6-[(R)- than for N6-[(S)-phenylisopropyl]adenosine. The specific binding of [3H]CHA in coated vesicles is regulated by guanine nucleotides. [3H]CHA specific binding was decreased by 70% in the presence of the hydrolysis-resistant GTP analogue guanyl-5-yl-imidodiphosphate. Bovine brain coated vesicles present adenylate cyclase activity. This activity was modulated by forskolin and CHA. The results of this study support the evidence that adenosine A1 receptors present in coated vesicles are coupled to adenylate cyclase activity through a Gi protein.  相似文献   

2.
Endogenous adenosine acting via A1 adenosine receptors is capable of inhibiting adenylate cyclase activity and neurotransmitter release in the brain. In this report, we describe the synthesis and attributes of a new series of A1 adenosine receptor agonists. One of these, [125I]N6-2-(4-amino-3-iodophenyl)ethyladenosine, can be used as a radioligand and another, [125I]N6-2-(4-azido-3-iodophenyl)ethyladenosine, as a photoaffinity probe. The unlabeled ligand, N6-2-(4-aminophenyl)ethyladenosine, and its iodinated product are full agonists, inhibiting cyclic AMP production in rat cerebral cortex membranes to the same extent as the prototypic A1 agonist N6-R-1-phenyl-2-propyladenosine. These new ligands are not substrates for adenosine deaminase. The new photoaffinity azide described here labels an Mr 38,000 protein that displays all the pharmacological characteristics expected of the A1 adenosine receptor. This is the same molecular-weight protein previously described using a cross-linking radioligand. This new azide compound demonstrates a 15-fold higher efficiency of incorporation, making it the photoaffinity probe of choice for tissues containing low concentrations of A1 adenosine receptors.  相似文献   

3.
Abstract: Single electroconvulsive shock (ECS) induced no change in [3H]quinuclidinyl benzilate ([3H]QNB) binding to muscarinic cholinergic receptors in rat cortex and hippocampus. ECS administered once daily for 7 days induced a significant reduction in [3H]QNB binding in both brain areas. Concurrent ECS reversed the significant increase in cortical [3H]QNB binding induced by chronic atropine administration. These findings may have relevance to the antidepressant or amnestic effects of electroconvulsive therapy.  相似文献   

4.
Chronic electroconvulsive shock (ECS) is known to increase the level of serotonin-2 (S2) receptors in male rat brain. Using quantitative autoradiography, we have studied the distribution pattern of these receptors in female as well as male rats and the effect of repeated ECS on the receptor level in both sexes. We find that although the distribution of S2 receptors is generally similar in males and females, they respond differently to repeated ECS. In males we found the expected increase in S2 binding, which was localized to specific cortical, hippocampal, and septal regions. In females, no increase was found in the cortex or septum and relatively small increases were found in the hippocampus. It appears that the regulation of S2 receptors by ECS is sex-dependent.  相似文献   

5.
We have examined the catecholamine-sensitive adenylate cyclase in the retina of the white perch (Roccus americanus). Both dopamine and the beta-adrenergic agonist isoproterenol stimulate cyclic AMP accumulation in this retina, but serotonin, an indoleamine, and phenylephrine, an alpha-adrenergic agonist, had no effect. The stimulation of adenylate cyclase by isoproterenol is more potent and effective than that of dopamine. The effects of dopamine and isoproterenol are mediated via independent dopamine and beta-adrenergic receptors. Haloperidol, a dopamine antagonist, blocks the stimulatory effect of dopamine but not of isoproterenol. Conversely, propranolol, a beta-adrenergic antagonist, blocks the stimulatory effect of isoproterenol but not of dopamine. The effects of dopamine and isoproterenol are not additive. In fractions of purified horizontal cells we found evidence for dopamine receptors linked to adenylate cyclase but did not find evidence for the presence of cyclase coupled beta-adrenergic receptors. The cellular location of the beta-adrenergic receptors is unknown. Our findings demonstrate the existence of both beta-adrenergic and dopamine receptors coupled to adenylate cyclase in the white perch retina. However, we did not find either epinephrine or norepinephrine, endogenous ligands of the beta-receptor, to be present in retinal extracts subjected to HPLC.  相似文献   

6.
The response of adenylate cyclase to GTP and to dopamine (DA) was investigated in synaptic plasma membranes isolated from rat striatum injected with pertussis toxin, which inactivates the inhibitory guanine nucleotide-binding regulatory protein (Ni) of adenylate cyclase. Pertussis toxin treatment reverted the inhibitory effects on the enzyme activity elicited by micromolar concentrations of GTP and reduced by 50% the DA inhibition of cyclase activity via D2 receptors. The toxin treatment enhanced the net stimulation of enzyme activity by DA in the presence of micromolar concentrations of GTP. However, the stimulatory effect of the selective D1 receptor agonist SKF 38393 was not significantly affected. The data indicate that Ni mediates D2 inhibition of striatal adenylate cyclase and participates in the modulation of D1 stimulation of the enzyme activity by DA.  相似文献   

7.
The receptors mediating the inhibition of D1 dopamine receptor-stimulated adenylate cyclase by opioids were examined in primary cultures of rat neostriatal neurons. Adenylate cyclase activity was dose-dependently increased by the selective D1 dopamine receptor agonist SKF 38393 (EC50 = 0.05 microM). This stimulation was fully antagonized by the selective D1 dopamine receptor antagonist SCH 23390 (1 microM). SKF 38393 (1 microM)-stimulated adenylate cyclase activity was strongly reduced (by almost 60%) by the highly selective mu-agonist [D-Ala2, MePhe4, Gly-ol5]-enkephalin (DAGO; EC50 = 0.006 microM) and high concentrations of the selective delta-agonist [D-Ser2(O-tert-butyl), Leu5]-enkephalyl-Thr6 (DSTBU-LET; EC50 = 0.13 microM) but not by the selective delta-agonist [D-penicillamine2, D-penicillamine5]enkephalin (DPDPE). D1 dopamine receptor-stimulated adenylate cyclase activity was also slightly reduced (by approximately 20%) by high concentrations of the kappa-agonist U50,488 (EC50 = 0.63 microM). The inhibitory effects of submaximally effective concentrations of DAGO, DSTBULET, and U50,488 were equally well antagonized by the mu-opioid receptor-selective antagonist naloxone (EC50 of approximately 0.1 microM). Neither the irreversible delta-ligand fentanyl isothiocyanate (1 microM) nor the reversible delta-antagonist ICI 174864 (1 microM) reversed the inhibitory effects of DSTBULET. The inhibitory effects of DAGO and U50,488 were equally well reversed by high concentrations (greater than 0.1 microM) of the kappa-opioid receptor-selective antagonist norbinaltorphimine. The effect of DAGO (1 microM) was already detectable after 1 day in culture, whereas DPDPE (1 microM) had no effect even after 28 days in culture. These data indicate that an homogeneous population of mu-opioid receptors coupled as inhibitors to D1 dopamine receptor-stimulated adenylate cyclase is expressed in rat neostriatal neurons in primary culture.  相似文献   

8.
Accumulation of inositol-1-phosphate after labeling with [3H]inositol and stimulation with noradrenaline, carbachol, and serotonin was measured in rat cortical, caudate nucleus, and hippocampal slices. The response to noradrenaline was significantly increased in cortical slices from animals that had received either a single electroconvulsive shock (ECS) or a series of 10 daily ECS but was unchanged in caudate nucleus or hippocampal slices. The response to carbachol, a muscarinic cholinergic agonist, was unchanged in cortical or caudate nucleus slices but was significantly reduced in hippocampal slices from animals that had received chronic ECS. The response to serotonin in cortical slices was not affected by the treatment. The results are correlated with changes in receptor number, which have been demonstrated to occur after administration of ECS.  相似文献   

9.
The potencies and intrinsic activities of adenosine analogs for stimulating cyclic AMP accumulation in slices of rat cerebral cortex were examined. 5'-N-Ethylcarboxamidoadenosine (NECA) caused the greatest increase in cyclic AMP accumulation (19.2-fold). 2-Chloroadenosine (2-CAD) induced a similar increase, but adenosine and six other analogs caused much smaller increases. All agonists tested had similar potencies in activating this response. Inhibition of adenosine uptake with 10 microM dipyridamole did not affect the maximal response to any agonist, although the potency of adenosine was increased approximately threefold. Each analog was also able to block partially the stimulation of cyclic AMP accumulation caused by NECA. Levels of cyclic AMP accumulation in the presence of NECA plus another analog were similar to those observed when the analog alone was present, as expected for partial agonists. Furthermore, the EC50 value for R-(-)-N6(2-phenylisopropyl)adenosine in increasing cyclic AMP accumulation was similar to the KI value for inhibiting the response to NECA. The EC50 value for adenosine was substantially higher than the KI value for inhibiting the response to NECA; however, in the presence of dipyridamole, the two values were more closely correlated. The response to NECA was blocked by 8-phenyltheophylline, 1,3-diethyl-8-phenylxanthine, and 8-p-sulfophenyltheophylline, with KI values from 1 to 10 microM. The results suggest that adenosine analogs stimulate cyclic AMP accumulation in cerebral cortex through low-affinity receptors, but that some analogs only partially activate these receptors. Adenosine itself may also be a partial agonist, or its actions may be obscured by simultaneous activation of another receptor.  相似文献   

10.
Abstract: The uptake and release of [3H]noradrenaline and [3H]-5-hydroxytryptamine (5-HT) were studied in cerebral cortex slices from rats 30 min and 24 h after a single electroconvulsive shock (ECS) and 24 h after a series of five shocks given over 10 days. Both the K m and V max for 5-HT uptake were lower than controls 24 h after a single ECS, whereas after 5 ECS spread over 10 days both parameters remained depressed, though only the fall in Vmax was significant. Noradrenaline uptake was not altered after a single ECS, but the Vmax and K m were elevated following chronic ECS treatment. Neither ECS treatment schedule had any effect on the potassium-stimulated release of either transmitter. It is possible that the changes in monoamine uptake seen following ECS are an adaptive response to alterations in the synaptic cleft concentration of these transmitters.  相似文献   

11.
Abstract: Stimulation of rat striatal adenylate cyclase by guanyl nucleotides was examined utilizing either MgATP or magnesium 5′-adenylylimidodiphos-phate (MgApp(NH) p) as substrate. GTP and 5′- guanylylimidodiphosphate (Gpp(NH) p) stimulate adenylate cyclase under conditions where the guanyl nucleotide is not degraded. The apparent stimulation of adenylate cyclase by GDP is due to an ATP-dependent transphosphorylase present in the tissue which converts GDP to GTP. We conclude that GTP is the physiological guanyl nucleotide responsible for stimulation of striatal adenylate cyclase. Dopamine lowers the Ka for Gpp(NH) p stimulation twofold, from 2.4 μM to 1.2 μM and increases maximal velocity 60%. The kinetics of Gpp(NH) p stimulation indicate no homotropic interactions between Gpp(NH) p sites and are consistent with one nonessential Gpp(NH) p activator site per catalytic site. Double reciprocal plots of the activation by free Mg2+ were concave downward, indicating either two sets of sites with different affinities or negative cooperativity (Hill coefficient = 0.3, K0.5= 23 mM). The data conform well to a model for two sets of independent sites and dopamine lowers the Ka for free Mg2+ at the high-affinity site threefold, from 0.21 mM to 0.07 mM. The antipsy-chotic drug fluphenazine blocks this shift in Ka due to dopamine. Dopamine does not appreciably affect the affinity of adenylate cyclase for the substrate, MgApp(NH) p. Therefore, dopamine stimulates striatal adenylate cyclase by increasing the affinity for free Mg2+ and guanyl nucleotide and by increasing maximal velocity.  相似文献   

12.
In a previous study we showed that in vivo treatment with pertussis toxin could inhibit some, but not all, effects of adenosine in the rat hippocampus. In this study we investigated the effect of pertussis toxin on the binding of adenosine analogues to A1 receptors in rat brain. Intraventricular injection of pertussis toxin (10 micrograms into the lateral ventricle) did not affect A1 receptor binding in any brain region studied, as evaluated by autoradiography. In vitro treatment of brain sections (10 microns) with pertussis toxin for 5 h, under conditions when greater than 80% of the G proteins were ADP ribosylated, did not alter radioligand binding to adenosine A1 receptors. GTP (10 microM) virtually abolished the high-affinity agonist binding to the A1 receptor. On the other hand, in solubilized cortical membrane preparations, pertussis toxin pretreatment induced a complete shift of the A1 receptors to the low-affinity state. This suggests that the ability of pertussis toxin to affect G proteins coupled to A1 receptors in brain depends not only on the distribution of the toxin but also on the configuration of receptors and G proteins.  相似文献   

13.
Rats receiving injections of specific antagonists of dopamine receptors (SCH 23390 for D1, haloperidol for D2, and haloperidol+SCH 23390) once daily for 21 days develop a selective supersensitivity of the blocked receptors. To study the molecular correlates of these adaptive changes, we evaluated the involvement of GTP-binding proteins in the development of supersensitivity of dopamine receptors. By means of adenylate cyclase studies, we tested whether any of the treatments modified the functional response to GTP in striata dissected from control and treated rats. Our data show that the chronic blockade of D1 and/or D2 receptors potentiates both basal and dopamine receptor-stimulated adenylate cyclase activity in response to GTP. D1 receptor up-regulation correlates with an increased adenylate cyclase response to GTP, whereas D2 receptor up-regulation is accompanied by an enhanced GTP-induced inhibition of enzyme activity, in both basal and receptor-activated conditions. This potentiation does not seem to match the changes in mRNA content of Gs and Gi alpha subunits. Unexpectedly, however, a significant increase in Gi alpha subunit mRNA was found after the chronic blockade of D1 receptors; this result could be explained by cross-regulation between GTP-binding protein-mediated pathways. This cross-regulation could serve as a protective mechanism whereby cells exposing up-regulated receptors protect themselves from a condition of hyperactivity of the adenylate cyclase enzyme.  相似文献   

14.
Abstract: The present article investigates chronic opioid regulation of the stimulatory adenylate cyclase-coupled prostaglandin E1 (PGE1) receptor system in neuroblastoma × glioma (NG108-15) hybrid cells. Persistent activation of δ-opioid receptors by morphine (10 µmol/L; 3 days) substantially down-regulates the number of PGE1 binding sites by ~30%, without affecting their affinity. Radioligand binding studies performed in the presence of GTPγS (100 µmol/L) further revealed that the remaining PGE1 binding sites are still capable of interacting functionally with their associated stimulatory G proteins, Gs. On the postreceptor level, neither changes in the abundance nor in the intrinsic activity of the α subunit of Gs (Gsα) were found during the state of opioid dependence, as has been verified by western blot and S49 cyc? reconstitution experiments, respectively. Evaluation of the functional interaction between PGE1 receptors and Gs by means of receptor-stimulated, cholera toxin-catalyzed ADP-ribosylation of Gsα revealed a significant increase in the ability of PGE1 receptors to activate Gsα (3.3-fold increase in EC50; p < 0.05) in cells chronically exposed to morphine. This effect was completely blocked by coincubation of the cells together with the opiate antagonist naloxone (100 µmol/L; 3 days), whereas precipitation of morphine withdrawal by naloxone (100 µmol/L) had no further effect on sensitization in PGE1 receptor/Gs coupling. These findings provide evidence that the stimulatory adenylate cyclase-coupled PGE1 receptor system represents a potential target of chronic δ-opioid receptor activation in NG108-15 hybrid cells. They further suggest that sensitization in stimulatory signal transduction plays a critical role in the generation of opioid dependence.  相似文献   

15.
Rat CNS adenosine A1 receptors were studied by quantitative autoradiography after the administration of convulsant 3-mercaptopropionic acid (MP) and an adenosine analogue cyclopentyladenosine (CPA), using 2-chloro-N6-[cyclopentyl-2,3,4,5-3H adenosine]-([3H]CCPA) as radioactive ligand. Specific binding was quantified in hippocampus, cerebellum, cerebral cortex, thalamic nuclei, superior colliculus and striatum, and the highest densities were found in CA1, CA2, and CA3 hippocampus subareas and the lowest levels in superior colliculus and striatum. MP administration (150 mg/kg, i.p.) produced significant increases in [3H]CCPA binding in CA1 subarea at seizure (15%) and postseizure (21%) and in CA2 at seizure (15%) but a tendency to decrease in dentate gyrus. There was an increase in cerebellum at seizure (18%) but no significant changes in the other studied regions. CPA injection (2 mg/kg, i.p.) enhanced [3H]CCPA binding in CA1 and CA2 areas (17–18%) but not in CA3 area of the hippocampus. When CPA was administered before MP, which delayed seizure onset, an increase in [3H]CCPA binding in CA1 hippocampus subarea (19%) and cerebellum (28%) was also observed. Results showed that the administration of convulsant MP and adenosine analogue CPA exerts differential effects on adenosine A1 receptors in CNS areas; hippocampus is the most affected area with all treatments, specially CA1 subarea, supporting an essential role in convulsant activity as well as in seizure prevention.  相似文献   

16.
The ontogeny of histaminergic neurotransmission in the rat brain was studied by assessing development of histamine levels in brain regions, along with H-1 receptor binding of [3H]mepyramine and H-1 receptor-mediated cellular events. In the hypothalamus, which is rich in histaminergic innervation, levels of the amine were low at birth, increased sharply at 8 days of age, and reached adult concentrations shortly thereafter; this pattern is typical of most neurotransmitters. In contrast, regions poor in neuronal histamine showed an initially high histamine level and a subsequent decline with development, as is known to occur during general growth of tissues. The developmental profile of H-1 receptor binding sites resembled that of the neuronal histamine pool, and the increases with age resulted from changes in the number of binding sites without alterations in Kd. Cellular responses to H-1 receptor activation were assessed by determining the stimulation of phospholipid turnover evoked by intracisternally administered histamine, a process that has been shown to involve only the neuronal compartment. Again, the developmental profile was superimposable upon that of H-1 receptor binding and that of hypothalamic histamine levels. These studies indicate that ontogeny of histaminergic neurotransmission is a coordinated process, with simultaneous development of neuronal histamine, its key biosynthetic enzyme, and H-1 receptors coupled directly to cellular events.  相似文献   

17.
Adenosine is a potent endogenous anti-inflammatory and immunosuppressive metabolite that is a potent modulator of tissue repair. However, the adenosine A2A receptor (A2AR)-mediated promotion of collagen synthesis is detrimental in settings such as scarring and scleroderma. The signaling cascade from A2AR stimulation to increased collagen production is complex and obscure, not least because cAMP and its downstream molecules PKA and Epac1 have been reported to inhibit collagen production. We therefore examined A2AR-stimulated signaling for collagen production by normal human dermal fibroblasts (NHDF). Collagen1 (Col1) and collagen3 (Col3) content after A2AR activation by CGS21680 was studied by western blotting. Contribution of PKA and Epac was analyzed by the PKA inhibitor PKI and by knockdowns of the PKA-Cα, -Cβ, -Cγ, Epac1, and Epac2. CGS21680 stimulates Col1 expression at significantly lower concentrations than those required to stimulate Col3 expression. A2AR stimulates Col1 expression by a PKA-dependent mechanism since PKA inhibition or PKA-Cα and -Cβ knockdown prevents A2AR-mediated Col1 increase. In contrast, A2AR represses Col3 via PKA but stimulates both Col1 and Col3 via an Epac2-dependent mechanism. A2AR stimulation with CGS21680 at 0.1 μM increased Col3 expression only upon PKA blockade. A2AR activation downstream signaling for Col1 and Col3 expression proceeds via two distinct pathways with varying sensitivity to cAMP activation; more highly cAMP-sensitive PKA activation stimulates Col1 expression, and less cAMP-sensitive Epac activation promotes both Col1 and Col3 expression. These observations may explain the dramatic change in Col1:Col3 ratio in hypertrophic and immature scars, where adenosine is present in higher concentrations than in normal skin.  相似文献   

18.
Subchronic treatment with MAP (4.6 mg/kg, i.p., once daily for 11 days) significantly decreased the Kd, but not Bmax, values of [3H]1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX) binding to adenosine A1 receptors in the prefrontal cortex and hippocampus, but not striatum, of rat brain. However, subchronic treatment with PCP (10 mg/kg, i.p., once daily for 11 days) did not alter the Kd and Bmax values of [3H]DPCPX binding to adenosine A1 receptors in these three regions. Subchronic treatment with MAP or PCP did not alter the Bmax and Kd values of [3H]2-p-(2-carboxyehyl)phenethylamino-5-N-ethylcarboxyamidoadenosine ([3H]CGS21680) binding to adenosine A2A receptors in the striatum. Furthermore, subchronic treatment with MAP or PCP significantly decreased the specific binding of [3H]CGS21680 to adenosine A2A receptors in the hippocampus, but not in the prefrontal cortex. Thus, these results suggest that MAP and PCP may produce differential effects on the adenosine A2A receptors, but not adenosine A1 receptors in rat brain.  相似文献   

19.
The first effects of 3,4-methylen-dioxy-metamphetamine (MDMA, “ecstasy”), on serotonin 1A (5-HT1A) receptors in rat hippocampus were determined by means of [3H]-8-hydroxy-dipropylamino-tetralin ([3H]-8-OH-DPAT) and 5′guanosine-(γ-[35S]-thio)triphosphate ([35S]-GTPγS) binding as well as inhibition of forskolin (FK)-stimulated adenylyl cyclase (AC) activity. The study was completed by [35S]-GTPγS functional autoradiography experiments carried out in frontal sections of rat brain, including the hippocampal region. Results showed that MDMA was either able to displace [3H]-8-OH-DPAT binding (Ki  500 nM) or to reduce the number of specific sites (Bmax) without affecting Kd. The drug also failed to change the [35S]-GTPγS binding or to inhibit AC velocity, underlying its behavior as a non-competitive 5-HT1A receptor antagonist. Further, MDMA (1 or 100 μM), partially antagonized either [35S]-GTPγS binding stimulation of the agonists 5CT and 8-OH-DPAT or the AC inhibition induced by 5CT and DP-5CT. However, in contrast to binding studies, in AC assays the amphetamine displayed an effect also on EC50, always being less potent than the reference antagonist WAY100,635. In functional autoradiography, MDMA behaved either as a partial 5-HT1A antagonist in limbic areas or, added alone, as an agonist, increasing the coupling signal presumably through 5-HT release from synapses. Interestingly, the selective 5-HT re-uptake inhibitor (SSRI) fluoxetine had no effect on MDMA [35S]-GTPγS binding activation. This latter finding indicates that the amphetamine can release 5-HT via alternative mechanisms to 5-HT transporter binding, probably via membrane synaptic receptors or vesicular transporters. The release of other transmitters is not excluded. Therefore, our results encourage at extending the study of MDMA biochemical profiles, in the attempt to elucidate those amphetamine-induced pathways with a potential for neurotoxicity or psycho-stimulant activity.  相似文献   

20.
Subhash MN  Srinivas BN  Vinod KY 《Life sciences》2002,71(13):1559-1567
The in vivo effect of trazodone on the density of [(3)H]5-HT binding sites and 5-HT(1A) receptors and adenylyl cyclase (AC) response was studied in regions of rat brain. The chronic administration of trazodone (10 mg/Kg body wt, 40 days) resulted in a significant downregulation of [(3)H]5-HT binding sites and 5-HT(1A) receptors in cortex and hippocampus. Trazodone significantly (p < 0.0001) decreased the density of [(3)H]5-HT binding sites in cortex (42.6 +/- 3.6 fmol/mg protein, 65%) and hippocampus (12.6 +/- 1.6 fmol/mg protein, 87%) when compared to control values of 121.9 +/- 5.4 and 99.3 +/- 7.5 fmol/mg protein in these regions, respectively. Similarly there was a significant (p < 0.0001) decrease in the density of 5-HT(1A) receptors in both cortex (7.2 +/- 0.5 fmol/mg protein, 70%) and hippocampus (6.3 +/- 1.2 fmol/mg protein, 79%) when compared to control values of 24.2 +/- 2.1 and 30.6 +/- 3.7 fmol/mg protein, in these regions respectively. However, the affinity of [(3)H]5-HT to 5-HT binding sites (1.83 +/- 0.26 nM, p < 0.0001) and [(3)H]8-OH-DPAT to 5-HT(1A) receptors (0.60 +/- 0.06 nM, p < 0.05) was significantly decreased only in cortex when compared to the control K(d) values of 0.88 +/- 0.04 nM and 0.47 +/- 0.02 nM in these regions, respectively.The basal AC activity did not alter in treated rats, where as, the inhibition of forskolin-stimulated AC activity by 5-HT (10 microM) was significantly (p < 0.0001) decreased both in cortex (43%) and hippocampus (40%) when compared to control levels. In conclusion, chronic treatment with trazodone results in downregulation of 5-HT(1A) receptors in cortex and hippocampus along with concomitant increased AC response, suggesting the involvement of 5-HT(1A) receptor-mediated AC response in the mechanism of action of trazodone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号