首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wang Z  Liang P  Jia X  Jin G  Song H  Han Y  Lu J  Li K 《PloS one》2012,7(5):e36838
The baseline and longitudinal changes of the posterior cingulate cortex (PCC) connectivity were assessed in order to clarify the neural mechanism of mild cognitive impairment (MCI). Twenty-eight right-handed subjects (14 MCI patients and 14 healthy elders) participated in this study. Clinical and neuropsychological examinations were performed on all the subjects. PCC functional connectivity was studied by examining the correlation between low frequency fMRI signal fluctuations in the PCC and those in all the other brain regions. Additionally, we traced all the MCI patients and compared their PCC connectivity in the initial stage and that in 3 years later. We also explored the relationship between the PCC functional connectivity strength and cognitive performances. Our results are as follows: Functional connectivity between the PCC and a set of regions is decreased in MCI patients. Most of these regions are within the default mode network (DMN). Three years later, the regions of superior frontal gyrus (SFG) and middle frontal gyrus (MFG) presented further decreased connectivity to the PCC in MCI. In addition, we also find enhanced functional connectivity between PCC and medial prefrontal cortex (MPFC), PCC and anterior cingulate cortex (ACC) in MCI patients. At last, our research also shows that the PCC connectivity with some regions significantly correlates with the cognitive performances of patients as measured by mini-mental state examination (MMSE), and California verbal learning test (CVLT) scores. The baseline and longitudinal changes of the PCC connectivity in our study suggest that impairment and compensation coexist in the disease progress of MCI patients.  相似文献   

2.
3.
MOTIVATION: We describe a stand-alone algorithm to predict disulfide bond partners in a protein given only the amino acid sequence, using a novel neural network architecture (the diresidue neural network), and given input of symmetric flanking regions of N-terminus and C-terminus half-cystines augmented with residue secondary structure (helix, coil, sheet) as well as evolutionary information. The approach is motivated by the observation of a bias in the secondary structure preferences of free cysteines and half-cystines, and by promising preliminary results we obtained using diresidue position-specific scoring matrices. RESULTS: As calibrated by receiver operating characteristic curves from 4-fold cross-validation, our conditioning on secondary structure allows our novel diresidue neural network to perform as well as, and in some cases better than, the current state-of-the-art method. A slight drop in performance is seen when secondary structure is predicted rather than being derived from three-dimensional protein structures.  相似文献   

4.
At present, resting state functional MRI (rsfMRI) is increasingly used in human neuropathological research. The present study aims at implementing rsfMRI in mice, a species that holds the widest variety of neurological disease models. Moreover, by acquiring rsfMRI data with a comparable protocol for anesthesia, scanning and analysis, in both rats and mice we were able to compare findings obtained in both species. The outcome of rsfMRI is different for rats and mice and depends strongly on the applied number of components in the Independent Component Analysis (ICA). The most important difference was the appearance of unilateral cortical components for the mouse resting state data compared to bilateral rat cortical networks. Furthermore, a higher number of components was needed for the ICA analysis to separate different cortical regions in mice as compared to rats.  相似文献   

5.
Hexokinase I, the pacemaker of glycolysis in brain tissue, is composed of two structurally similar halves connected by an alpha-helix. The enzyme dimerizes at elevated protein concentrations in solution and in crystal structures; however, almost all published data reflect the properties of a hexokinase I monomer in solution. Crystal structures of mutant forms of recombinant human hexokinase I, presented here, reveal the enzyme monomer for the first time. The mutant hexokinases bind both glucose 6-phosphate and glucose with high affinity to their N and C-terminal halves, and ADP, also with high affinity, to a site near the N terminus of the polypeptide chain. Exposure of the monomer crystals to ADP in the complete absence of glucose 6-phosphate reveals a second binding site for adenine nucleotides at the putative active site (C-half), with conformational changes extending 15 A to the contact interface between the N and C-halves. The structures reveal distinct conformational states for the C-half and a rigid-body rotation of the N-half, as possible elements of a structure-based mechanism for allosteric regulation of catalysis.  相似文献   

6.
Wave-type weakly electric fish are specialists in time-domain processing: behaviors in these animals are often tightly correlated with the temporal structure of electrosensory signals. Behavioral responses in these fish can be dependent on differences in the temporal structure of electrosensory signals alone. This feature has facilitated the study of temporal codes and processing in central nervous system circuits of these animals. The temporal encoding and mechanisms used to transform temporal codes in the brain have been identified and characterized in several species, including South American gymnotid species and in the African mormyrid genus Gymnarchus. These distantly related groups use similar strategies for neural computations of information on the order of microseconds, milliseconds, and seconds. Here, we describe a suite of mechanisms for behaviorally relevant computations of temporal information that have been elucidated in these systems. These results show the critical role that behavioral experiments continue to have in the study of the neural control of behavior and its evolution.  相似文献   

7.
Unicolonial ant colonies occupy many nests and individuals rarely show aggression across large geographic distances. These traits make it difficult to detect colony structure. Here we identify colony structure at scales of hundreds of square-meters, within an invasive population of unicolonial Argentine ants. In experiments using labeled food, and in a 3-year census of nests and trails, we found that food was shared and nests were linked by trails at distances up to 50 meters. Food was not distributed to all nearby Argentine ant nests, showing that ants tend to share resources within a spatially bounded group of nests. The spatial extent of food sharing increased from winter to summer. Across different habitats and nest densities, nests were consistently aggregated at spatial scales of 3- 4 meters in radius. This suggests that new nests bud from old nests at short distances regardless of local conditions. We suggest that a ‘colony’ of Argentine ants could be defined as a group of nests among which ants travel and share food. In our study population, colonies occupy up to 650 m2 and contain as many as 5 million ants. In combination with previous work showing that there is genetic differentiation among nests at similar spatial scales, the results suggest that Argentine ant populations do not function ecologically as single, large supercolonies, but instead as mosaics of smaller, distinct colonies consisting of groups of interacting nests. Received 6 June 2008; revised 30 June 2008; accepted 2 July 2008.  相似文献   

8.
9.
The present paper concentrates on the impact of visual attention task on structure of the brain functional and effective connectivity networks using coherence and Granger causality methods. Since most studies used correlation method and resting-state functional connectivity, the task-based approach was selected for this experiment to boost our knowledge of spatial and feature-based attention. In the present study, the whole brain was divided into 82 sub-regions based on Brodmann areas. The coherence and Granger causality were applied to construct functional and effective connectivity matrices. These matrices were converted into graphs using a threshold, and the graph theory measures were calculated from it including degree and characteristic path length. Visual attention was found to reveal more information during the spatial-based task. The degree was higher while performing a spatial-based task, whereas characteristic path length was lower in the spatial-based task in both functional and effective connectivity. Primary and secondary visual cortex (17 and 18 Brodmann areas) were highly connected to parietal and prefrontal cortex while doing visual attention task. Whole brain connectivity was also calculated in both functional and effective connectivity. Our results reveal that Brodmann areas of 17, 18, 19, 46, 3 and 4 had a significant role proving that somatosensory, parietal and prefrontal regions along with visual cortex were highly connected to other parts of the cortex during the visual attention task. Characteristic path length results indicated an increase in functional connectivity and more functional integration in spatial-based attention compared with feature-based attention. The results of this work can provide useful information about the mechanism of visual attention at the network level.  相似文献   

10.
Liang P  Wang Z  Yang Y  Jia X  Li K 《PloS one》2011,6(7):e22153
The known regional abnormality of the dorsolateral prefrontal cortex (DLPFC) and its role in various neural circuits in mild cognitive impairment (MCI) has given prominence to its importance in studies on the disconnection associated with MCI. The purpose of the current study was to examine the DLPFC functional connectivity patterns during rest in MCI patients and the impact of regional grey matter (GM) atrophy on the functional results. Structural and functional MRI data were collected from 14 MCI patients and 14 age, gender-matched healthy controls. We found that both the bilateral DLPFC showed reduced functional connectivity with the inferior parietal lobule (IPL), superior/medial frontal gyrus and sub-cortical regions (e.g., thalamus, putamen) in MCI patients when compared with healthy controls. Moreover, the DLPFC connectivity with the IPL and thalamus significantly correlated with the cognitive performance of patients as measured by mini-mental state examination (MMSE), clock drawing test (CDT), and California verbal learning test (CVLT) scores. When taking GM atrophy as covariates, these results were approximately consistent with those without correction, although there may be a decrease in the statistical power. These results suggest that the DLPFC disconnections may be the substrates of cognitive impairments in MCI patients. In addition, we also found enhanced functional connectivity between the left DLPFC and the right prefrontal cortex in MCI patients. This is consistent with previous findings of MCI-related increased activation during cognitive tasks, and may represent a compensatory mechanism in MCI patients. Together, the present study demonstrated the coexistence of functional disconnection and compensation in MCI patients using DLPFC functional connectivity analysis, and thus might provide insights into biological mechanism of the disease.  相似文献   

11.

Context

Exploring intermediate phenotypes within the human brain''s functional and structural circuitry is a promising approach to explain the relative contributions of genetics, complex behaviors and neural mechanisms in the development of major depressive disorder (MDD). The polymorphic region 5-HTTLPR in the serotonin transporter gene (SLC6A4) has been shown to modulate MDD risk, but the neural underpinnings are incompletely understood.

Objective

37 right handed healthy women between 21 and 61 years of age were invited to participate in an fMRI modified n-back study. The functional polymorphism 5-HTTLPR located in the promoter region of the SLC6A4 gene was genotyped using polymerase chain reaction (PCR).

Results

Short 5-HTTLPR allele carriers showed more blood-oxygen-level-dependent (BOLD) bilateral prefrontal cortex activation in the right [F(2, 30) = 4.8, η2 = .25, p = .026] and left [F(2, 30) = 4.1, η2 = .22, p = .015] inferior frontal gyrus pars triangularis with increasing n-back task difficulty relative to long 5-HTTLPR allele carriers. Short 5-HTTLPR allele carriers had inferior task performance on the most difficult n-back condition [F(2, 30) = 4.9, η2 = .26, p = .014].

Conclusions

This activation pattern found in healthy at risk individuals resembles an activation pattern that is typically found in patients suffering from acute MDD. Altered function in these areas may reflect intermediate phenotypes and may help explain the increased risk of depression in short 5-HTTLPR allele carriers.  相似文献   

12.
13.
Li L  Zhang JX  Jiang T 《PloS one》2011,6(7):e22357

Background

Visual working memory (VWM) helps us store visual information to prepare for subsequent behavior. The neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for hemi-field VWM retention.

Methodology/Principal Findings

In this study, we recorded electroencephalography (EEG) from 14 normal young adults while they performed a bilateral visual field memory task. Subjects had more rapid and accurate responses to the left visual field (LVF) memory condition. The difference in mean amplitude between the ipsilateral and contralateral event-related potential (ERP) at parietal-occipital electrodes in retention interval period was obtained with six different memory loads. Functional connectivity between 128 scalp regions was measured by EEG phase synchronization in the theta- (4–8 Hz), alpha- (8–12 Hz), beta- (12–32 Hz), and gamma- (32–40 Hz) frequency bands. The resulting matrices were converted to graphs, and mean degree, clustering coefficient and shortest path length was computed as a function of memory load. The results showed that brain networks of theta-, alpha-, beta-, and gamma- frequency bands were load-dependent and visual-field dependent. The networks of theta- and alpha- bands phase synchrony were most predominant in retention period for right visual field (RVF) WM than for LVF WM. Furthermore, only for RVF memory condition, brain network density of theta-band during the retention interval were linked to the delay of behavior reaction time, and the topological property of alpha-band network was negative correlation with behavior accuracy.

Conclusions/Significance

We suggest that the differences in theta- and alpha- bands between LVF and RVF conditions in functional connectivity and topological properties during retention period may result in the decline of behavioral performance in RVF task.  相似文献   

14.
Traditional reindeer herding of northern Fennoscandia has been based on seasonal movements independent of national borders. At the beginning of the 19th century, these yearly movements of reindeer were excessive, but during that century the borders between the Fennoscandian countries were closed. By analysing a 190‐base pair fragment of the mitochondrial DNA control region in 79 museum samples, we show that the reindeer of northern Fennoscandia were one homogenous population shortly after the national borders were closed. However, anthropogenic activity has effectively ended genetic exchange within northern Fennoscandia and has made the reindeer population within this region heterogeneous. Genetic input of eastern origin is also suggested within the extant Russian reindeer of the Kola Peninsula.  相似文献   

15.
16.
The elucidation of the complex machinery used by the human brain to segregate and integrate information while performing high cognitive functions is a subject of imminent future consequences. The most significant contributions to date in this field, known as cognitive neuroscience, have been achieved by using innovative neuroimaging techniques, such as electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), which measure variations in both the time and the space of some interpretable physical magnitudes. Extraordinary maps of cerebral activation involving function-restricted brain areas, as well as graphs of the functional connectivity between them, have been obtained from EEG and fMRI data by solving some spatio-temporal inverse problems, which constitutes a top-down approach. However, in many cases, a natural bridge between these maps/graphs and the causal physiological processes is lacking, leading to some misunderstandings in their interpretation. Recent advances in the comprehension of the underlying physiological mechanisms associated with different cerebral scales have provided researchers with an excellent scenario to develop sophisticated biophysical models that permit an integration of these neuroimage modalities, which must share a common aetiology. This paper proposes a bottom-up approach, involving physiological parameters in a specific mesoscopic dynamic equations system. Further observation equations encapsulating the relationship between the mesostates and the EEG/fMRI data are obtained on the basis of the physical foundations of these techniques. A methodology for the estimation of parameters from fused EEG/fMRI data is also presented. In this context, the concepts of activation and effective connectivity are carefully revised. This new approach permits us to examine and discuss some future prospects for the integration of multimodal neuroimages.  相似文献   

17.
18.
The solution structure of the hyperstable MYL mutant (R31M/E36Y/R40L) of the Arc repressor of bacteriophage P22 was determined by NMR spectroscopy and compared to that of the wild-type Arc repressor. A backbone rmsd versus the average of 0.37 A was obtained for the well-defined core region. For both Arc-MYL and the wild-type Arc repressor, evidence for a fast equilibrium between a packed ("in") conformation and an extended ("out") conformation of the side chain of Phe 10 was found. In the MYL mutant, the "out" conformation is more highly populated than in the wild-type Arc repressor. The Phe 10 is situated in the DNA-binding beta-sheet of the Arc dimer. While its "in" conformation appears to be the most stable, the "out" conformation is known to be present in the operator-bound form of Arc, where the Phe 10 ring contacts the phosphate backbone [Raumann, B. E., et al. (1994) Nature 367, 754-757]. As well as DNA binding, denaturation by urea and high temperatures induces the functionally active "out" conformation. With a repacking of the hydrophobic core, this characterizes a premelting transition of the Arc repressor. The dynamical properties of the Arc-MYL and the wild-type Arc repressor were further characterized by 15N relaxation and hydrogen-deuterium exchange experiments. The increased main chain mobility at the DNA binding site compared to that of the core of the protein as well as the reorientation of the side chain of Phe 10 is suggested to play an important role in specific DNA binding.  相似文献   

19.
In a rapidly changing world, it is important to understand how environmental modifications by humans affect species behavior. This is not a simple task, since we need to deal with a multitude of species and the different external contexts that affect their behavior. Here, we investigate how interpatch short-distance movements of 73 common forest bird species can be predicted by forest cover and forest isolation. We modeled bird movement as a function of environmental covariates, species traits – body mass and feeding habit – and phylogenetic relationships using Joint Species Movement Models. We used field data collected in forest edges and open pastures of six 600 × 600 m plots in the Atlantic Forest biodiversity hotspot. We found that birds fly larger distances and visit more forest patches and remnant trees with decreasing forest cover. Increasing landscape isolation results in larger flight distances, and it increases the use of trees as stepping-stones for most species. Our results show that birds can adjust their behavior as a response to spatial modification in resource distribution and landscape connectivity. These adjusted behaviors can potentially contribute to ecosystem responses to habitat modification.  相似文献   

20.
Helical membrane proteins are more tightly packed and the packing interactions are more diverse than those found in helical soluble proteins. Based on a linear correlation between amino acid packing values and interhelical propensity, we propose the concept of a helix packing moment to predict the orientation of helices in helical membrane proteins and membrane protein complexes. We show that the helix packing moment correlates with the helix interfaces of helix dimers of single pass membrane proteins of known structure. Helix packing moments are also shown to help identify the packing interfaces in membrane proteins with multiple transmembrane helices, where a single helix can have multiple contact surfaces. Analyses are described on class A G protein-coupled receptors (GPCRs) with seven transmembrane helices. We show that the helix packing moments are conserved across the class A family of GPCRs and correspond to key structural contacts in rhodopsin. These contacts are distinct from the highly conserved signature motifs of GPCRs and have not previously been recognized. The specific amino acid types involved in these contacts, however, are not necessarily conserved between subfamilies of GPCRs, indicating that the same protein architecture can be supported by a diverse set of interactions. In GPCRs, as well as membrane channels and transporters, amino acid residues with small side-chains (Gly, Ala, Ser, Cys) allow tight helix packing by mediating strong van der Waals interactions between helices. Closely packed helices, in turn, facilitate interhelical hydrogen bonding of both weakly polar (Ser, Thr, Cys) and strongly polar (Asn, Gln, Glu, Asp, His, Arg, Lys) amino acid residues. We propose the use of the helix packing moment as a complementary tool to the helical hydrophobic moment in the analysis of transmembrane sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号