首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We are interested in noise-induced firings of subthreshold neurons which may be used for encoding environmental stimuli. Noise-induced population synchronization was previously studied only for the case of global coupling, unlike the case of subthreshold spiking neurons. Hence, we investigate the effect of complex network architecture on noise-induced synchronization in an inhibitory population of subthreshold bursting Hindmarsh–Rose neurons. For modeling complex synaptic connectivity, we consider the Watts–Strogatz small-world network which interpolates between regular lattice and random network via rewiring, and investigate the effect of small-world connectivity on emergence of noise-induced population synchronization. Thus, noise-induced burst synchronization (synchrony on the slow bursting time scale) and spike synchronization (synchrony on the fast spike time scale) are found to appear in a synchronized region of the JD plane (J: synaptic inhibition strength and D: noise intensity). As the rewiring probability p is decreased from 1 (random network) to 0 (regular lattice), the region of spike synchronization shrinks rapidly in the JD plane, while the region of the burst synchronization decreases slowly. We separate the slow bursting and the fast spiking time scales via frequency filtering, and characterize the noise-induced burst and spike synchronizations by employing realistic order parameters and statistical-mechanical measures introduced in our recent work. Thus, the bursting and spiking thresholds for the burst and spike synchronization transitions are determined in terms of the bursting and spiking order parameters, respectively. Furthermore, we also measure the degrees of burst and spike synchronizations in terms of the statistical-mechanical bursting and spiking measures, respectively.  相似文献   

2.
In this paper, we numerically study how the NGN's deviation q from Gaussian noise (q = 1) affects the spike coherence and synchronization of 60 coupled Hodgkin–Huxley (HH) neurons driven by a periodic sinusoidal stimulus on random complex networks. It is found that the effect of the deviation depends on the network randomness p (the fraction of random shortcuts): for larger p (p > 0.15), the spiking regularity keeps being improved with increasing q; while, for smaller p (p < 0.15), the spiking regularity can reach the best performance at an optimal intermediate q value, indicating the occurrence of “deviation-optimized spike coherence”. The synchronization becomes enhanced with decreasing q, and the enhancing extent for a random HH neuron network is stronger than for a regular one. These behaviors show that the spike coherence and synchronization of the present HH neurons on random networks can be more strongly enhanced by various other types of external noise than by Gaussian noise, whereby the neuron firings may behave more periodically in time and more synchronously in space. Our results provide the constructive roles of the NGN on the spiking activity of the present system of HH neuron networks.  相似文献   

3.
We study an excitatory all-to-all coupled network of N spiking neurons with synaptically filtered background noise and slow activity-dependent hyperpolarization currents. Such a system exhibits noise-induced burst oscillations over a range of values of the noise strength (variance) and level of cell excitability. Since both of these quantities depend on the rate of background synaptic inputs, we show how noise can provide a mechanism for increasing the robustness of rhythmic bursting and the range of burst frequencies. By exploiting a separation of time scales we also show how the system dynamics can be reduced to low-dimensional mean field equations in the limit N → ∞. Analysis of the bifurcation structure of the mean field equations provides insights into the dynamical mechanisms for initiating and terminating the bursts.  相似文献   

4.
Accurate assessments of pollen counts are valuable to allergy sufferers, the medical industry, and health researchers; however, monitoring stations do not exist in most areas. In addition, the degree of spatial reliability provided by the limited number of monitoring stations is poorly understood. We developed and compared spatial models to estimate pollen concentrations in locations without monitoring stations. Daily Acer, Quercus, and overall tree, grass, and weed pollen counts, in grains/m3, were obtained from 14 aeroallergen monitoring stations located in the northeastern and mid-Atlantic region of the United States from 2003 to 2006. Pollen counts were spatially interpolated using ordinary kriging. Mixed effects and generalized estimating equations incorporating daily and seasonal weather characteristics, pollen season characteristics and land-cover information were also developed to estimate daily pollen concentrations. We then compared observed values from a monitoring station to model estimates for that location. Observed counts and kriging estimates for tree pollen differed (p = 0.04), but not when peak periods were removed (p = 0.29). No differences between observed and kriging estimates of Acer (p = 0.46), Quercus (p = 0.24), grass (p = 0.31) or weed pollen (p = 0.29) were found. Estimates from longitudinal models also demonstrated good agreement with observed counts, except for the extremes of pollen distributions. Our results demonstrate that spatial interpolation techniques as well as regression methods incorporating both weather and land-cover characteristics can provide reliable estimates of daily pollen concentrations in areas where monitors do not exist for all but periods of extremely high pollen.  相似文献   

5.
The role of relative spike timing on sensory coding and stochastic dynamics of small pulse-coupled oscillator networks is investigated physiologically and mathematically, based on the small biological eye network of the marine invertebrate Hermissenda. Without network interactions, the five inhibitory photoreceptors of the eye network exhibit quasi-regular rhythmic spiking; in contrast, within the active network, they display more irregular spiking but collective network rhythmicity. We investigate the source of this emergent network behavior first analyzing the role of relative input to spike–timing relationships in individual cells. We use a stochastic phase oscillator equation to model photoreceptor spike sequences in response to sequences of inhibitory current pulses. Although spike sequences can be complex and irregular in response to inputs, we show that spike timing is better predicted if relative timing of spikes to inputs is accounted for in the model. Further, we establish that greater noise levels in the model serve to destroy network phase-locked states that induce non-monotonic stimulus rate-coding, as predicted in Butson and Clark (J Neurophysiol 99:146–154, 2008a; J Neurophysiol 99:155–165, 2008b). Hence, rate-coding can function better in noisy spiking cells relative to non-noisy cells. We then study how relative input to spike–timing dynamics of single oscillators contribute to network-level dynamics. Relative timing interactions in the network sharpen the stimulus window that can trigger a spike, affecting stimulus encoding. Also, we derive analytical inter-spike interval distributions of cells in the model network, revealing that irregular Poisson-like spike emission and collective network rhythmicity are emergent properties of network dynamics, consistent with experimental observations. Our theoretical results generate experimental predictions about the nature of spike patterns in the Hermissenda eye.  相似文献   

6.
By using an oligonucleotide mixture corresponding to a region highly conserved among alternative sigma factors we identified a new σ factor gene (rpoH) from Rhodobacter capsulatus. This gene encodes a protein of 34 kDa with strong similarity to the RpoH (σ 32) factors from other bacterial species. It was not possible to inactivate the R. capsulatusrpoH gene by introducing a resistance cassette, implying that it is essential for growth. The 5′ ends of the mRNAs were mapped to two sequences with similarity to an rpoH- and an rpoD-dependent promoter, respectively. The amounts of both these mRNAs increased after heat shock, but were unaffected by a decrease in oxygen tension. Western analysis using a σ factor-specific antibody revealed the accumulation of a protein of about 34 kDa after heat shock, and an increase in the amounts of a protein with the same size after reduction of oxygen tension in R. capsulatus cultures. Received: 16 March 1998 / Accepted: 28 July 1998  相似文献   

7.
Auditory receptors of the locust (Locusta migratoria) were investigated with respect to the directionality cues which are present in their spiking responses, with special emphasis on how directional cues are influenced by the rise time of sound signals. Intensity differences between the ears influence two possible cues in the receptor responses, spike count and response latency. Variation in rise time of sound pulses had little effect on the overall spike count; however, it had a substantial effect on the temporal distribution of the receptor's spiking response, especially on the latencies of first spikes. In particular, with ramplike stimuli the slope of the latency vs. intensity curves was steeper as compared to stimuli with steep onsets (Fig. 3). Stimuli with flat ramplike onsets lead to an increase of the latency differences of discharges between left and right tympanic receptors. This type of ramplike stimulus could thus facilitate directional hearing. This hypothesis was corroborated by a Monte Carlo simulation in which the probability of incorrect directional decisions was determined on the basis of the receptor latencies and spike counts. Slowly rising ramps significantly improved the decisions based on response latency, as compared to stimuli with sudden onsets (Fig. 4). These results are compared to behavioural results obtained with the grasshopper Ch. biguttulus. The stridulation signals of the females of this species consist of ramplike pulses, which could be an adaptation to facilitate directional hearing of phonotactically approaching males.Abbreviations HFR high frequency receptor - ILD interaural level difference - LFR low frequency receptor - SPL sound pressure level - WN white noise  相似文献   

8.
The radial movement of cis-abscisic acid (ABA) has been investigated in young excised roots of Zea mays L. and Helianthus annuus L. which were grown hydroponically. In addition to the symplastic path, ABA was largely translocated across the root apoplast by solvent drag with the water in the transpiration stream. On the apoplastic path ABA may even cross the endodermis. Depending on the ABA concentration of the medium (range: 5–500 nM) and in the root apoplast, the solvent-drag component of the flow of ABA counteracted the dilution of ABA in the xylem caused by transpirational water flow. Acidification of the rhizosphere and of the root apoplast increased the apoplastic transport component. In sunflower, the apoplastic flow of ABA was significantly weaker than in maize roots. This was also indicated by the larger apparent reflection coefficient (σABA) of sunflower roots for ABA (sunflower: σABA = 0.97 ± 0.02, n = 6 roots; maize: σABA = 0.68 ± 0.06, n = 6 roots; ±SD). For both species, σABA was smaller than unity. Root reflection coefficients were affected by factors such as pH, ABA concentration of the medium, and by the suction force applied to excised root systems. Due to the complex composite structure of the permeation barrier in the root, the reflection coefficient estimated from solvent drag is also complex. Since unstirred layers affected the absolute value of the reflection coefficient, σABA has been termed `apparent'. It is concluded that the pH and ABA concentration of the soil solution as well as the transpiration rate (suction force) modify the intensity of the root-to-shoot signal which is influenced by an apoplastic bypass flow of ABA. The latter may be substantially affected by the existence of Casparian bands in the exodermis, which were lacking in the roots studied in this paper. Received: 25 February 1998 / Accepted: 16 July 1998  相似文献   

9.
Pollen plays an important role in the development and exacerbation of allergic diseases. We aimed to investigate the days with highest counts of the most allergenic pollens and to identify the meteorological factors affecting pollen counts in the atmosphere of Ankara, Turkey. Airborne pollen measurements were carried out from 2005 to 2008 with a Burkard volumetric 7-day spore trap. Microscope counts were converted into atmospheric concentrations and expressed as pollen grains/m3. Meteorological parameters were obtained from the State Meteorological Service. All statistical analyses were done with pollen counts obtained from March to October for each year. The percentages of tree, grass and weed pollens were 72.1% (n = 24,923), 12.8% (n = 4,433) and 15.1% (n = 5,219), respectively. The Pinaceae family from tree taxa (39% to 57%) and the Chenopodiaceae/Amaranthaceae family from weed taxa, contributed the highest percentage of pollen (25% to 43%), while from the grass taxa, only the Poaceae family was detected from 2005 to 2008. Poaceae and Chenopodiaceae/Amaranthaceae families, which are the most allergenic pollens, were found in high numbers from May to August in Ankara. In multiple logistic regression analysis, wind speed (OR = 1.18, CI95% = 1.02–1.36, P = 0.023) for tree pollen, daily mean temperature (OR = 1.10, CI95% = 1.04–1.17, P = 0.001) and sunshine hours (OR = 1.15, CI95% = 1.01–1.30, P = 0.033) for grass pollen, and sunshine hours (OR = 3.79, CI95% = 1.03–13.92, P = 0.044) for weed pollen were found as significant risk factors for high pollen count. The pollen calendar and its association with meteorological factors depend mainly on daily temperature, sunshine hours and wind speed, which may help draw the attention of physicians and allergic patients to days with high pollen counts.  相似文献   

10.
Annett Hertel  Ernst Steudle 《Planta》1997,202(3):324-335
Using the cell pressure probe, the effects of temperature on hydraulic conductivity (Lp; osmotic water permeability), solute permeability (permeability coefficient, Ps), and reflection coefficients (σs) were measured on internodes of Chara corallina, Klein ex Willd., em R.D.W.. For the first time, complete sets of transport coefficients were obtained in the range between 10 and 35 °C which provided evidence about pathways of water and solutes as they move across the plasma membrane (water channel and bilayer arrays). Test solutes used to check for the selectivity of water channels were monohydric alcohols of different molecular size and shape (ethanol, n-propanol, iso-propanol, and tert-butanol) and heavy water (HDO). Within the limits of accuracy, Q10 values for Lp and for the diffusive water permeability (Pd) were identical (Q10 for Lp = 1.29 ± 0.17 (± SD; n = 15 cells) and Q10 for Pd = 1.25 ± 0.16 (n = 5 cells)). The Q10 values were equivalent to activation energies of Ea = 16.8 ± 6.4 and 16.6 ± 10.0 kJ · mol−1, respectively, which is similar to that of self-diffusion or of viscous flow of water. The Q10 values and activation energies for Ps of the alcohols were significantly larger (ethanol: Q10 = 1.68 ± 0.16, Ea = 37.1 ± 5.9 kJ · mol−1; n-propanol: Q10 =  1.75 ± 0.40, Ea = 43.1 ± 15.3 kJ · mol−1; iso-propanol: Q10 = 2.12 ± 0.42, Ea =  52.2 ± 14.6 kJ · mol−1; tert-butanol: Q10 = 2.13 ± 0.56, Ea = 51.6 ± 17.1 kJ · mol−1; ±SD; n = 5 to 6 cells). Effects of temperature on reflection coefficients were most pronounced. With increasing temperature, σs values of the alcohols decreased and those of HDO increased. The data indicate that water and solutes use different pathways when crossing the membrane. Ordinary and isotopic water use water channels and the other test solutes use the bilayer array (composite transport model of membrane). Changes in σs values with temperature were found to be a sensitive measure for the open/closed state of water channels. The decrease of σs with temperature was theoretically predicted from the temperature dependence of Ps and Lp. Differences between predicted and measured values of σs allowed estimation of the bypass flow (slippage) of solutes through water channels which did not completely exclude test solutes. The permeability of channels depended on the structure and size of test solutes. It is concluded that water channels are much less selective than is usually thought. Since water channels represent single-file or no-pass pores, solutes drag along considerable amounts of water as they diffuse across channels. This results in low overall values of σs. The σs of HDO was extremely low. Its response to temperature was opposite to that for the σs of the alcohols. This suggested a stronger effect of temperature on the hydraulic (osmotic) than on the diffusive water flow across individual water channels, i.e. a differential sensitivity of different mechanisms to temperature. Received: 10 October 1996 / Accepted: 2 December 1996  相似文献   

11.
While the number of peripheral blood T lymphocytes and of their two main subsets (CD4+CD8− and CD4−CD8+) varies little in a given healthy individual, substantial variation is observed between individuals. It was proposed that these counts could be influenced by MHC polymorphisms because of the well-established role of MHC molecules in thymic T lymphocyte maturation and presentation of antigenic peptides to peripheral T lymphocytes. To test this hypothesis, we have chosen the crab-eating macaque (Macaca fascicularis), an animal model phylogenetically close to man. We selected the Philippine macaque population because of a restriction of the MHC polymorphism in this islander population. Peripheral blood lymphocytes were counted with an automated analyzer and T lymphocyte subsets were assessed by immunolabeling and flow cytometry. The MHC polymorphism was investigated in 200 unrelated subjects using 14 microsatellites markers distributed across the MHC and the DRB locus that was genotyped by denaturing gradient gel electrophoresis and sequencing. All markers were in Hardy–Weinberg equilibrium. Allelic associations were tested with the UNPHASED software. We revealed a significant influence of the MHC class II region on CD4+ T lymphocyte blood count with the largest effect associated with a two-locus haplotypes combining the DRACA allele 274 and the DRB haplotype #8a (p < 8 × 10−7). Our data should stimulate a similar association study of the CD4+ T cell counts in humans.  相似文献   

12.
Botryosphaeria rhodina DABAC P82 and Pleurotus pulmonarius CBS 664.97 were tested for their ability to grow and to degrade aromatic hydrocarbons in an aged contaminated soil. To evaluate the impact of indigenous microflora on the overall process, incubations were performed on both fumigated and nonfumigated soils. Fungal colonization by B. rhodina was unexpectedly lower in the fumigated than in the nonfumigated soil while the growth of P. pulmonarius showed an opposite response. Degradation performances and detoxification by both fungi in the nonfumigated soil were markedly higher than those observed in the fumigated one. Heterotrophic bacterial counts in nonfumigated soil augmented with either B. rhodina or P. pulmonarius were significantly higher than those of the corresponding incubation control (6.7 ± 0.3 × 108 and 8.35 ± 0.6 × 108, respectively, vs 9.2 ± 0.3 × 107). Bacterial communities of both incubation controls and fungal-augmented soil were compared by numerical analysis of denaturing gradient gel electrophoresis profiles of polymerase chain reaction (PCR)-amplified 16S ribosomal RNA (rRNA) genes and cloning and sequencing of PCR-amplified 16S rRNA genes. Besides increasing overall diversity, fungal augmentation led to considerable qualitative differences with respect to the pristine soil.  相似文献   

13.
The aim of this study was to investigate the effects of topotecan, a topoisomerase I-inhibiting anticancer agent, on hematologic parameters and serum levels of trace elements. The study was conducted on three groups consisting of 16 and 18 rabbits in the study groups and 15 rabbits in the control group. Rabbits in group I (n = 16) received high-dose topotecan intravenously (i.v.; 0.5 mg/kg once daily), while rabbits in group II (n = 18) received low-dose topotecan i.v. (0.25 mg/kg once daily) for 3 days. The 15 rabbits comprising the control group did not receive topotecan. Serum samples were collected from each rabbit on the first day, before the treatment, and on the 15th day of treatment. Erithrocytes, hemoglobin, white blood cell count, thrombocyte count, and trace elements such as selenium, copper, lead, zinc, and cobalt were analyzed. Hemoglobin levels and erythrocyte counts were lower in both study groups than in the control group. However, thrombocyte and leukocyte counts were similar in all three groups (p > 0.005). Serum trace element levels (copper, lead, zinc, and cobalt) did not differ significantly between groups. However, serum selenium levels were significantly lower in both study groups than the control group (p < 0.001). The results revealed that topotecan treatment causes a decrease in erythrocyte counts and hemoglobin levels due to bone marrow suppression, and these effects must be taken into account during treatment. In addition, selenium supplementation might be helpful in cancer patients receiving topotecan to increase the effect of the chemotherapeutic agent.  相似文献   

14.
 We studied the influence of noisy stimulation on the Hodgkin-Huxley neuron model. Rather than examining the noise-related variability of the discharge times of the model – as has been done previously – our study focused on the effect of noise on the stationary distributions of the membrane potential and gating variables of the model. We observed that a gradual increase in the noise intensity did not result in a gradual change of the distributions. Instead, we could identify a critical intermediate noise range in which the shapes of the distributions underwent a drastic qualitative change. Namely, they moved from narrow unimodal Gaussian-like shapes associated with low noise intensities to ones that spread widely at large noise intensities. In particular, for the membrane potential and the sodium activation variable, the distributions changed from unimodal to bimodal. Thus, our investigation revealed a noise-induced transition in the Hodgkin-Huxley model. In order to further characterize this phenomenon, we considered a reduced one-dimensional model of an excitable system, namely the active rotator. For this model, our analysis indicated that the noise-induced transition is associated with a deterministic bifurcation of approximate equations governing the dynamics of the mean and variance of the state variable. Finally, we shed light on the possible functional importance of this noise-induced transition in neuronal coding by determining its effect on the spike timing precision in models of neuronal ensembles. Received: 19 September 2000 / Accepted in revised form: 4 March 2001  相似文献   

15.
We investigated the normalized autocovariance (correlation coefficient) function of the output of an erf( ) function nonlinearity subject to non-zero mean Gaussian noise input. When the sigmoid is wide compared to the input, or the input mean is close to the midpoint of the sigmoid, the output correlation coefficient function is very close to the input correlation coefficient function. When the noise mean and variance are such that there is a significant probability of operating in the saturation region and the sigmoid is not too flat, the correlation coefficient output function is less than that of the input. This difference is much greater when the correlation coefficient is negative than when it is positive. The sigmoid partially rectifies the correlation coefficient function. The analysis does not depend on the spectral properties of the input noise. All that is required is that the input at times t and (t+τ) be jointly Gaussian with the same mean and autocovariance. The analysis therefore applies equally well to the case of two identical sigmoids with jointly Gaussian inputs. This correlational rectification could help explain the parameter sensitivity of "neural network" models. If biological neurons share this property it could explain why few negative correlations between spike trains have been observed. Received: 1 July 1992/Accepted in revised form: 6 July 1993  相似文献   

16.
Statistical inferences are essentially important in analyzing neural spike trains in computational neuroscience. Current approaches have followed a general inference paradigm where a parametric probability model is often used to characterize the temporal evolution of the underlying stochastic processes. To directly capture the overall variability and distribution in the space of the spike trains, we focus on a data-driven approach where statistics are defined and computed in the function space in which spike trains are viewed as individual points. To this end, we at first develop a parametrized family of metrics that takes into account different warpings in the time domain and generalizes several currently used spike train distances. These new metrics are essentially penalized L p norms, involving appropriate functions of spike trains, with penalties associated with time-warping. The notions of means and variances of spike trains are then defined based on the new metrics when p = 2 (corresponding to the “Euclidean distance”). Using some restrictive conditions, we present an efficient recursive algorithm, termed Matching-Minimization algorithm, to compute the sample mean of a set of spike trains with arbitrary numbers of spikes. The proposed metrics as well as the mean spike trains are demonstrated using simulations as well as an experimental recording from the motor cortex. It is found that all these methods achieve desirable performance and the results support the success of this novel framework.  相似文献   

17.
 The information transmission properties of single, de-efferented primary muscle-spindle afferents from the hind limb of the cat were investigated. The gastrocnemius medialis muscle was stretched randomly while recording spike trains from several muscle-spindle afferents in the dorsal root. Two classes of input stimuli were used: (i) Gaussian noise with band-limited flat spectrum, and (ii) Gaussian noise with a more “naturalistic” 1/f n spectrum. The “reconstruction” method was used to calculate a lower bound to the information rate (in bits per second) between the muscle spindles and the spinal cord. Results show that in response to the flat-spectrum input, primary muscle-spindle afferents transfer information mainly about high frequencies, carrying 2.12 bits/spike. In response to naturalistic-spectrum inputs, primary muscle-spindle afferents transfer information about both low and high frequencies, with “spiking efficiency” increasing to 2.67 bits/spike. A simple muscle-spindle simulation model was analyzed with the same method, emphasizing the important part played by the intrafusal fiber mechanical properties in information transmission. Received: 22 January 2002 / Accepted in revised form: 17 June 2002 Correspondence to: Y. Tock (e-mail: ytock@tx.technion.ac.il, Fax: +972-4-8323041)  相似文献   

18.
Eleven feed samples associated with six animal (horse and poultry) intoxication outbreaks (1991) in the state of Paraná, Brazil, were evaluated for fungal and fumonisin contamination. In order to estimate the␣trend of livestock intoxication, fumonisin contamination was monitored in corn produced both at the commercial level (1991, 1995 crop), and in an experimental field at a local Agronomy Institute (1997 crop). The total mould count in the feed samples ranged from 2.9 × 103 to 1.9 × 107 CFU/g, with Fusarium verticillioides as the predominant species, at a high count of 2.4 × 104–6.5 × 105 CFU/g. Fumonisins (FB1 + FB2) were detected in all corn-based feed samples at levels ranging from 2.89 to 14.54 μg/g. All 27 Northern corn samples (1991 crop) were contaminated with fumonisins at levels ranging from 2.32 to 16.64 μg/g. Twenty-six (96.3%) out of 27 corn samples from the Central-Southern region (1995 crop) were positive for fumonisins (FB1+FB2), with the range of 0.07–3.66 μg/g, while all 37 Northern samples (1995 crop) were contaminated with fumonisins ranging from 0.57 to 9.97 μg/g. Twenty-one out of 37 corn samples from the Northern region (1997 crop) were positive for fumonisins, but at low level (range of 0.05–2.67 μg/g). The results showed a decreasing trend in fumonisin contamination over the years. Nowadays animal intoxication outbreaks rarely occur in this State, as both animal producers and feed industries have become conscious about monitoring of corn and other raw materials at the quality control level.  相似文献   

19.
 Stochastic resonance can be described as improved detection of weak periodic stimuli by a dynamic nonlinear system, resulting from the simultaneous presentation of a restricted dynamic range of low-intensity noise. This property has been reported in simple physical and biological activities. The present study describes data consistent with the interpretation that stochastic resonance can be observed in the response of cochlear neurons. These experiments utilized low levels (−5 to 25 dB SPL) of stimuli and noise (5 to 30 dB SPL). Stimuli consisted of simultaneously presented 8 kHz (F 1) and 8.8 kHz (F 2) tone bursts, which generated an 800 Hz F 2F 1 cochlear nerve envelope ensemble response in the gerbil. The mean response threshold was approximately −3 dB SPL. Simultaneous presentation of a low-intensity wideband noise increased the amplitude of this response. This was observed with tonal stimuli having intensities of 0–5 dB SPL; responses to stimulus levels >10 dB were attenuated by noise. Response amplitude was increased by noise levels of 10–15 dB; the amplitude was unaffected by lower levels of noise, and decreased in the presence of higher noise levels. These properties are compatible with those of stochastic resonance. Accepted: 11 March 1999  相似文献   

20.
In the present study, experiments were designed to investigate if supplementation with calcium during 4 weeks had an effect on blood parameters in sedentary male athletes at rest and exhaustion. Thirty healthy subjects of ages ranging from 18 to 22 years were included in the study. The subjects were separated into three groups, as follows: Group 1 consisted sedentary athletes receiving 35 mg/kg/day calcium gluconate. Group 2 included subjects equally supplemented with calcium training 90 min/day for 5 days/week. Group 3 were subject to the same exercise regime but did not receive calcium supplements. Blood parameters were determined in the experimental subjects at rest and after exhaustion. The leukocyte count (WBC) of athletes in groups 2 and 3 were significantly higher at exhaustion (p < 0.05). There were no significant differences in the WBC of the two supplemented groups. The erythrocyte count (RBC) was increased in the supplemented athletes after training (p < 0.05), but hemoglobin, hematocrit, and trombocyte levels remained unchanged. The mean corpuscular volume increased in the calcium-supplemented group at rest (p < 0.05). These results suggest that calcium supplementation only causes increases in white and red blood cell counts in athletes after exhaustion while other hematological parameters remain unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号