首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat Kupffer cells in vitro strongly bind neuraminidase-treated rat erythrocytes but not untreated erythrocytes. Binding between cells is inhibited by preincubation of macrophages with D-galactose and related sugars, but not with unrelated saccharides. We therefore suggest that cell adherence is mediated by a galactose-specific receptor on the Kupffer cell membrane.  相似文献   

2.
Lidoflazine strongly inhibited the equilibrium exchange of uridine in human erythrocytes (Ki approximately 16 nM). Uridine zero-trans influx was similarly inhibited by lidoflazine in cultured HeLa cells (IC50 approximately to 80 nM), whereas P388 mouse leukemia and Novikoff rat hepatoma cells were three orders of magnitude more resistant (IC50 greater than 50 microM). Uridine transport was also inhibited by nifedipine, verapamil, diltiazem, prenylamine and trifluoperazine, but only at similarly high concentrations in both human erythrocytes and the cell lines. IC50 values ranged from about 10 microM for nifedipine and about 20 microM for verapamil to more than 100 microM for diltiazem, prenylamine and trifluoperazine. The concentrations required for inhibition of nucleoside transport are several orders higher than those blocking Ca2+ channels. Lidoflazine competitively inhibited the binding of nitrobenzylthioinosine to high-affinity sites in human erythrocytes, but did not inhibit the dissociation of nitrobenzylthioinosine from these sites on the transporter as is observed with dipyridamole and dilazep.  相似文献   

3.
Direct evidence is given for the presence of an N-acetyl-D-galactosamine-specific lectin on the Kupffer cell surface by visualization of ligand binding in electron microscopy. When freshly isolated Kupffer cells are incubated with asialofetuin adsorbed onto colloidal gold particles (ASF-gold), binding and endocytosis of ligand are seen. Recognition of ASF-gold by Kupffer cells is completely abolished in the presence of N-acetyl-D-galactosamine (25 mM) or EGTA (3 mM), but is not significantly reduced by N-acetyl-D-glucosamine or D-mannose (25 mM). ASF particles are endocytosed via the coated pit/vesicle pathway and appear to be transported to the secondary lysosomes by coated vesicles, as shown by the occurrence of coated areas in the secondary lysosome membrane. These observations demonstrate the presence of an asialoglycoprotein receptor on Kupffer cells; therefore, the hepatocyte is not the only cell in the rat liver with D-galactose receptor activity.  相似文献   

4.
We studied interactions of isolated Thomsen-Friedenreich (T)- and Tn-specific glycoproteins with the Gal/GalNAc-specific receptors on rat Kupffer cells and compared them to those with rat hepatocytes. Immunoreactive T and Tn are specific pancarcinoma epitopes. Electron microscopy of gold-labelled T and Tn antigens revealed their specific binding to Kupffer cells, followed by their uptake via the coated pit/vesicle pathway of receptor-mediated endocytosis. Preincubation of Kupffer cells with GalNAc and GalNAc-BSA, but not GlcNAc or GlcNAc-BSA specifically inhibited binding of the T and Tn glycoproteins. Desialylated, isologous erythrocytes (T RBC) are known to bind to the Gal/GalNAc receptors of rat Kupffer cells and hepatocytes. This attachment was specifically inhibited by T and Tn in a concentration-dependent manner: 50% T RBC-Kupffer cell contacts were inhibited at 8.5.10(-6) mM T and 8.5.10(-5) mM Tn antigen concentrations, respectively. The corresponding figures for hepatocytes were 6.10(-6) mM T and 1.2.10(-6) mM Tn antigen. Amino-terminal cleavage products of the T glycoprotein, possessing clusters terminating in non-reducing Gal/GalNAc, inhibited T RBC binding to Kupffer cells and hepatocytes usually at 10(-2) to 10(-5) mM concentrations, whereas GalNAc, galactose and galactose glycosides inhibited at millimolar concentrations. Galactose-unrelated carbohydrates were inactive at concentrations greater than or equal to 50 mM.  相似文献   

5.
Purified Ca2+-ATPase from rabbit skeletal muscle has been incorporated into intact erythrocyte membranes by a two-step procedure. The isolated protein was reconstituted into proteoliposomes composed of phosphatidylethanolamine, phosphatidylcholine, and cardiolipin (50:20:30%, respectively). The resulting proteoliposomes were fused with erythrocytes in presence of La3+, Ca2+, or Mg2+. Subsequently, 45Ca uptake into the cells could be demonstrated. It was dependent on externally added ATP, inhibited by N-ethylmaleimide and p-hydroxymercuribenzoate, and enhanced by inactivation of the endogenous Ca2+-ATPase which catalyzes Ca2+ extrusion from the cells. The insertion of the protein did not induce cell lysis, but the cells did become more fragile. Functional insertion of isolated membrane proteins into cell membranes allows a new approach to research of plasma membranes.  相似文献   

6.
When the whole erythrocytes were exposed to LaCl3, A--23187, ionomycin, orthovanadate and saponin, there was Ca2+ binding only following La3+ treatment of the cells. The binding was evident at a wide range (0.1 microM--1.OmM) of La3+ concentrations. Iodoacetamide-induced (incubation for 3 hours, 37 degrees C) decrease in erythrocyte ATP levels was found to result in a 3-fold reduction in Ca2+ binding to the cytoskeleton. La(3+)-induced Ca2+ binding enhanced the incorporation of 14C-glucose and/or its metabolites into the red cell skeleton. Thus, the detected new type of Ca2+ binding to the cytoskeleton of human and rat erythrocytes is likely to be due to the cumulative process: direct binding of La3+ to the outer surface of a membrane and the metal-induced trigger of nucleotide--dependent intracellular process.  相似文献   

7.
The parameters of the reaction between a rat alveolar macrophage lectin (Mr = 180,000) and its ligands have been examined. The reaction is dependent on Ca2+ over the optimal pH range for binding. The apparent dissociation constant for fucosyl bovine serum albumin, the standard ligand used in these studies, is 1.4 X 10(-10) M. The ligand binding specificity was determined by measurement of the inhibition of binding of fucosyl bovine serum albumin by various glycoproteins and saccharides. D-Mannose, L-fucose, and N-acetyl-D-glucosamine were the most effective inhibitors, and D-galactose was much poorer. The equatorial hydroxyl groups on the C-3 and C-4 of the mannose ring are important in the lectin-ligand interaction, and the axial hydroxyl group on the C-2 contributes to a lesser extent. Immunocytological studies revealed that the lectin isolated from alveolar macrophages is widely distributed in other rat tissues. Hepatocytes are devoid of the lectin, but hepatic Kupffer cells and endothelial cells contain significant amounts. This was confirmed by isolation of the lectin from liver. Spleen and skeletal muscle also contain lectin, but much smaller amounts were found in brain, kidney, and heart muscle.  相似文献   

8.
Glutardialdehyde-fixed or native rat erythrocytes were partially desialylated by the action of Vibrio cholerae sialidase, resulting in the binding of these cells to homologous peritoneal macrophages. Resialylation of these erythrocytes by purified alpha-(2----3)- or alpha-(2----6)-sialyltransferases with CMP-N-acetylneuraminic acid led to the incorporation of 60-80% of the enzymically released sialic acid. Binding of the resialylated erythrocytes to peritoneal macrophages was reduced when compared with corresponding, partially desialylated erythrocytes. Thus, the amount of transferred sialic acid was sufficient to demonstrate reconstitution of the masking effect of sialic acids.  相似文献   

9.
Role of carbohydrates in rat leukemia cell-liver macrophage cell contacts   总被引:1,自引:0,他引:1  
The mechanism by which macrophages recognize tumor cells is still unknown. We have studied interactions between rat liver macrophages and rat L 5222 leukemia cells. These tumor cells, but not normal leukocytes or erythrocytes, adhere to freshly isolated macrophages in vitro. Binding of tumor cells by macrophages can be inhibited by N-acetyl-D-galactosamine, D-galactose and more potently by glycoproteins with terminal N-acetyl-D-galactosamine or D-galactose residues. Tumor cell adhesion is calcium-dependent. The relevant leukemia cell membrane structures which bear terminal beta-D-galactosyl or related residues have been determined as trypsin- and pronase-sensitive, and hence may presumably be glycoproteins. The tumor cell receptor on liver macrophages appears to be a lectin with the carbohydrate specificity N-acetyl-D-galactosamine greater than D-galactose greater than L-fucose.  相似文献   

10.
The mechanism by which macrophages recognize tumor cells is still unknown. We have studied interactions between rat liver macrophages and rat L 5222 leukemia cells. These tumor cells, but not normal leukocytes or erythrocytes, adhere to freshly isolated macrophages in vitro. Binding of tumor cells by macrophages can be inhibited by N-acetyl-D-galactosamine, D-galactose and more potently by glycoproteins with terminal N-acetyl-D-galactosamine or D-galactose residues. Tumor cell adhesion is calcium-dependent. The relevant leukemia cell membrane structures which bear terminal beta-D-galactosyl or related residues have been determined as trypsin- and pronase-sensitive, and hence may presumably be glycoproteins. The tumor cell receptor on liver macrophages appears to be a lectin with the carbohydrate specificity N-acetyl-D-galactosamine greater than D-galactose greater than L-fucose.  相似文献   

11.
The release of the prostanoids prostaglandin D2 (PGD2), prostaglandin E2 (PGE2) and thromboxane induced by zymosan and phorbol ester in cultured rat Kupffer cells was found to depend on the extracellular concentration of Ca2+ to some extent. Prostanoid formation following the addition of the calcium ionophore A 23187 was totally inhibited when calcium ions were withdrawn from the medium whereas the prostanoid synthesis from added arachidonic acid was independent of Ca2+. A half-maximal rate of PGE2 release by cells treated with zymosan, phorbol ester or A23187 was obtained at 0.6-0.7 microM free extracellular Ca2+ and greater than or equal to 100 microM free Ca2+ was required to stimulate PGE2 formation maximally. The calmodulin antagonist R24571 partially inhibited the release of PGE2 elicited by zymosan and A23187 but not by phorbol ester or arachidonic acid. Verapamil and nifedipine, two calcium channel blockers, had no effect on the formation of PGE2 irrespective of the stimulus. TMB 8 [3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester] an intracellular calcium antagonist, inhibited the synthesis of PGE2 induced by zymosan and phorbol ester. The superoxide formation following the addition of zymosan and phorbol ester was not influenced by removal of calcium ions from the medium or by addition of the various calcium antagonists. The data presented here suggest that Ca2+-dependent reactions are involved in the synthesis of prostanoids induced by zymosan and phorbol ester and that both extracellular Ca2+ and mobilization of Ca2+ from intracellular stores are needed to induce maximally the production of prostanoids in cultured rat Kupffer cells.  相似文献   

12.
Ca2+ flux as an initial event in phagocytosis by rat Kupffer cells   总被引:1,自引:0,他引:1  
Ca2+ uptake by monolayer cultures of rat Kupffer cells was strongly stimulated immediately after contact with phagocytosable material, e.g. zymosan particles. The intensity of the luminol-mediated chemiluminescence following zymosan addition was dependent on extracellular Ca2+; addition of the Ca2+-ionophore A 23187 did not further increase the zymosan-elicited response. The superoxide-mediated chemiluminescence was not inhibited by indomethacin but could be suppressed by compounds known to inhibit Ca2+-calmodulin-dependent reactions. Analysis of their efficiency, however, suggests that the O-2 production is mediated by Ca2+ rather than Ca2+-calmodulin and that the inhibitors exert another, e.g. membrane-directed influence.  相似文献   

13.
Concanavalin A binding and Ca2+ fluxes in rat spleen cells   总被引:3,自引:0,他引:3  
Addition of the mitogenic lectin concanavalin A to rat spleen cells results in a small increase in the steady-state Ca2+ content of the cells. 45Ca2+ fluxes were measured under conditions where artifacts due to Ca2+ binding to concanavalin A could be excluded. Both 45Ca2+ influx into and efflux from these cells are significantly activated by the lectin. If 45Ca2+ is added 30 min after concanavalin A the rate of influx is further enhanced. The increase in 45Ca2+ influx correlates well with binding of concanavalin A to the cells. At low concentrations (optimal mitogenic) of the lectin (1 and 3 micrograms/ml) no significant increase in 45Ca2+ influx occurs but an increase in 45Ca2+ efflux is still observed. The results suggest that concanavalin A binding to the cell surface causes an increase in Ca2+ influx into the cells and that activation of Ca2+ efflux occurs as a response to an increase in the cytosolic Ca2+ activity. Thus, Ca2+ may well play a role in triggering lymphocyte activation.  相似文献   

14.
Endotoxin is a well established elicitor of cytokine production in mononuclear cells. Nevertheless, the path of signal transduction between the crucial contact of the cells with endotoxin (lipopolysaccharide) and the synthesis and release of the mediators is yet poorly understood. In particular, the involvement of Ca2+ and protein kinase C in this process is still a matter of controversy. Here, it will be demonstrated that removal of extracellular Ca2+ by EGTA does not have a significant effect on the endotoxin-stimulated production of tumor necrosis factor-alpha (TNF-alpha) and on total protein synthesis in rat Kupffer cells. However, the release of prostaglandin E2 could not be raised above the basal level under these conditions. Treatment with inhibitors of protein kinase C such as the isoquinoline derivative, H-7, or staurosporin is without influence on TNF-alpha synthesis. The depletion of protein kinase C through preincubation of rat Kupffer cells with phorbol 12-myristate 13-acetate for 24 h was also without effect on TNF-alpha production. The effectiveness of these inhibitors under the conditions used was ascertained by measurement of the O2- release from the same cell batches. Superoxide production known as protein kinase C-dependent in Kupffer cells (Dieter et al. (1986) Eur. J. Biochem. 86, 451-457) was suppressed in a dose-dependent manner by staurosporin or after prolonged pretreatment with the phorbol ester. H-7 decreased superoxide production only slightly in high doses that severely harm the Kupffer cells. Prostaglandin E2 release, although clearly protein-kinase C-dependent in phagocytosing rat Kupffer cells, is not decreased following exposure to lipopolysaccharide in the presence of protein kinase C inhibitors.  相似文献   

15.
Identification of the material present in human serum which is responsible for inhibition of binding of desialylated glycoproteins to rat hepatocyte membranes was accomplished by means of affinity chromatography using Sephadex to which the galactose-specific lectin, Ricinus Communis Agglutinin (RCAI) was covalently bound. RCAI-Sephadex was capable of extraction of virtually all of the inhibitory activity from cirrhotic serum. The RCA I-bound inhibitory activity could be eluted with 0.05 M D-galactose. The D-galactose eluate when subjected to radioimmunoelectrophoresis against a number of specific antibodies to human serum glycoproteins produced arcs corresponding to alpha 1-acid glycoprotein, alpha2-macroglobulin, IgG, IgA, and IgM. In another experiment putative terminal galactosyl groups of desialylated glycoproteins in the D-galactose eluate from cirrhotic serum exposed to RCAI-Sephadex were labelled with tritiated borohydride after treatment with galactose oxidase. Subsequent gel electrophoresis showed peaks of radioactivity throughout the area of the gel corresponding to protein molecular weights of the 19 S, 7 S, and 4 S classes. It thus appears that a heterogeneous population of desialylated serum glycoproteins accounts for the inhibition of binding of desialylated glycoprotein to the hepatocyte membrane and that these desialylated glycoproteins are present in small amounts in normal human serum and in greatly increased quantities in serum from patients with cirrhosis.  相似文献   

16.
The liver has recently been identified as a major organ for destruction of desialylated platelets. However, the underlying mechanism remains unclear. Kupffer cells, which are professional phagocytic cells in the liver, comprise the largest population of resident tissue macrophages in the body. Kupffer cells express a C-type lectin receptor, CLEC4F, that recognizes desialylated glycans with an unclear in vivo role in mediating platelet destruction. In this study, we generated a CLEC4F-deficient mouse model (Clec4f−/−) and found that CLEC4F was specifically expressed by Kupffer cells. Using the Clec4f−/− mice and a newly generated platelet-specific reporter mouse line, we revealed a critical role for CLEC4F on Kupffer cells in mediating destruction of desialylated platelets in the liver in vivo. Platelet clearance experiments and ultrastructural analysis revealed that desialylated platelets were phagocytized predominantly by Kupffer cells in a CLEC4F-dependent manner in mice. Collectively, these findings identify CLEC4F as a Kupffer cell receptor important for the destruction of desialylated platelets induced by bacteria-derived neuraminidases, which provide new insights into the pathogenesis of thrombocytopenia in disease conditions such as sepsis.Subject terms: Glycobiology, Cell death and immune response, Haematological diseases  相似文献   

17.
Freshly isolated rat liver cells adhere firmly to neuraminidase-treated rat or mouse erythrocytes but not to untreated erythrocytes. Binding between cells occurs only in the presence of calcium and is specially inhibited by D-galactose. We therefore suggest that cell adherence is mediated by a galactose-specific hepatic membrane receptor. Ultrastructural analysis of contact regions revealed point-like interactions between hepatic microvilli and erythrocytes and no broad areas of membrane contact. When liver cells are cultivated in vitro they lose their ability to bind erythrocytes within 24 h.  相似文献   

18.
The effect of arginine vasopressin (AVP) on Na+ kinetics was examined in cultured rat vascular smooth muscle cells (VSMC) and rat renal papillary collecting tubule cells (RPCT) by the direct measurement of intracellular sodium concentration [(Na+]i) using fluorescence dye; SBFI. AVP increased [Na+]i in a dose-dependent manner at a concentration of 10(-9) M or higher in rat VSMC but did not affect [Na+]i in rat RPCT. The calcium (Ca2+)-free solution completely blocked the increasing effect of AVP on [Na+]i in rat VSMC. A Ca2+ ionophore, ionomycin (1-2 x 10(-6) M) increased [Na+]i both in rat VSMC and RPCT. The Ca2(+)-free solution abolished the ionomycin-increased [Na+]i both in rat VSMC and RPCT. These results therefore indicate that after binding the V1 receptor AVP increases [Na+]i mediated through an increase in cellular Ca2+ uptake in VSMC.  相似文献   

19.
The properties of the Ca2+, Mg2+-ATPase of erythrocyte membranes from patients with cystic fibrosis (CF) were extensively compared to that of healthy controls. Following removal of an endogenous membrane inhibitor of the ATPase, activation of the enzyme by Ca2+, calmodulin, limited tryptic digestion or oleic acid, as well as inhibition by trifluoperazine, were studied. The only properties found to be significantly different (CF cells vs controls) were calmodulin-stimulated peak activity (90 vs 101, P less than 0.02) and trypsin-activated peak activity (92 vs 102, P less than 0.02). No significant difference could be measured in the steady-state Ca2+-dependent phosphorylation of CF and control erythrocyte membranes indicating similar numbers of enzyme molecules per cell. The functional state of Ca2+ homeostasis in intact erythrocytes was investigated by measuring the resting cytosolic free Ca2+ levels using quin-2. Both CF and control erythrocytes maintained cytosolic free Ca2+ between 20 to 30 nM. Addition of 50 uM trifluoperazine resulted in an increase in erythrocyte cytosolic free Ca2+ to about 50 nM in both CF and control cells. Estimates of erythrocyte membrane permeability using the steady-state uptake of 45Ca into intact erythrocytes revealed no differences between CF and control cells. These results confirm that there is a small decrease in the calmodulin-stimulated activity of the erythrocyte Ca2+, Mg2+-ATPase in CF. However, this deficit is apparently not large enough to impair the ability of the CF erythrocyte to maintain normal resting levels of cytosolic free Ca2+.  相似文献   

20.
1. Plasma membranes isolated from rat livers and ascites hepatoma cells (AH-130, AH-7974) were assayed for specific Ca2+ binding sites using 45Ca2+ and a Millipore filtration technique. The presence of higher (Kd = 1.4--1.5 . 10(-5) M) and lower (Kd = 0.9--1.0 . 10(-4) M) affinity sites in both liver and hepatoma membranes was observed. The hepatoma plasma membranes however, showed 1.4--2.1-fold as many Ca2+ binding sites (higher and lower affinity sites) as the liver plasma membranes on the basis of protein. 2. Concanavalin A stimulated the specific Ca2+ binding to liver and hepatoma plasma membranes, showing a maximal stimulation (3--5-fold) at 100 microgram/ml. Succinyl concanavalin A was less effective, whereas wheat germ agglutinin and ricinus lectin were ineffective. 3. Concanavalin A stimulated the Ca2+ uptake by AH-7974 cells. The concanavalin A-mediated stimulation of Ca2+ uptake showed lectin-concentrations and Ca2+-concentration dependencies similar to those in the concanavalin A-mediated stimulation of Ca2+ binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号