共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of caloric restriction (CR) on the activities of hepatic serine metabolizing enzymes in young (3 months) and old (30 months) mice was studied. Serine dehydratase (SDH) activity increased markedly with age in both diet groups and in old mice was higher in the CR group. No effects of CR were observed in the young. Serine:pyruvate transaminase (SPT) and glycerate kinase activities were unaffected by age and diet. However, glycerate dehydrogenase activity was decreased in old CR mice but not in young CR. The results of this study show that long-term CR influenced serine utilization only in the pathway catalyzed by SDH. This suggests that in mouse liver this pathway is critical for serine utilization in gluconeogenesis, while the SPT pathway plays a minor role. The increase in SDH activity with long-term CR is consistent with sustained increase in gluconeogenesis. 相似文献
2.
Aidoo A Mittelstaedt RA Bishop ME Lyn-Cook LE Chen YJ Duffy P Heflich RH 《Mutation research》2003,527(1-2):57-66
Caloric restriction (CR) reduces tumor incidence and retards aging in laboratory animals, including non-human primates. Because of the relationships among mutation, disease susceptibility, and aging, we investigated whether or not CR affects the accumulation of somatic cell mutations in aging animals. Starting at approximately 2 months of age, male CD rats (Harlan Sprague-Dawley-derived) were placed on different levels of dietary intake: ad libitum (AL) feeding, and 90% (10% CR), 75% (25% CR) and 60% (40% CR) of the total calories consumed by AL animals. At 3, 6, 12, and 24 months after the beginning of CR, Hprt mutant frequencies (MFs) were determined. The MFs measured in spleen lymphocytes from AL and CR rats sacrificed at 3 months of dietary restriction were similar for all dietary groups. However, the MFs at 6, 12, and 24 months of CR were significantly higher in AL-fed rats compared with animals on 40% CR: (4.5+/-0.4)x10(-6) versus (3.3+/-0.3)x10(-6) (P=0.032) in 6 months CR rats; (10.3+/-2.3)x10(-6) versus (7.3+/-1.2)x10(-6) in 12 months CR rats (P=0.04), and (18.3+/-3.2)x10(-6) versus (7.8+/-1.0)x10(-6) (P=0.001) in 24 months CR rats. In addition, rats receiving 25% CR for 24 months had a MF, (10.7+/-2.0)x10(-6), between the 40% CR and AL rats. Multiplex PCR of the Hprt gene in mutant clones from 12 and 24 months 40% CR rats and the corresponding AL rats detected deletions in 42% of CR mutants and 19% of AL mutants. Because of the difference in Hprt MF in the two groups, the estimated MF associated with deletions in CR rats was similar to the deletion MF in AL rats. This observation implies that the lower MF in CR rats is due to a reduction in smaller Hprt mutations (i.e. base substitutions and frameshifts). The pattern of smaller Hprt mutations from AL rats suggests that many were produced by reactive oxygen species (ROS). The results indicate that CR reduces the accumulation of spontaneous somatic cell mutation in aging rats, especially those caused by base substitutions and frameshifts. 相似文献
3.
Sébastien Lacroix Mario Lauria Marie-Pier Scott-Boyer Luca Marchetti Corrado Priami Laura Caberlotto 《Genes & nutrition》2015,10(6)
Worldwide population is aging, and a large part of the growing burden associated with age-related conditions can be prevented or delayed by promoting healthy lifestyle and normalizing metabolic risk factors. However, a better understanding of the pleiotropic effects of available nutritional interventions and their influence on the multiple processes affected by aging is needed to select and implement the most promising actions. New methods of analysis are required to tackle the complexity of the interplay between nutritional interventions and aging, and to make sense of a growing amount of -omics data being produced for this purpose. In this paper, we review how various systems biology-inspired methods of analysis can be applied to the study of the molecular basis of nutritional interventions promoting healthy aging, notably caloric restriction and polyphenol supplementation. We specifically focus on the role that different versions of network analysis, molecular signature identification and multi-omics data integration are playing in elucidating the complex mechanisms underlying nutrition, and provide some examples on how to extend the application of these methods using available microarray data.
Electronic supplementary material
The online version of this article (doi:10.1007/s12263-015-0508-9) contains supplementary material, which is available to authorized users. 相似文献4.
Lu JY Lin YY Sheu JC Wu JT Lee FJ Chen Y Lin MI Chiang FT Tai TY Berger SL Zhao Y Tsai KS Zhu H Chuang LM Boeke JD 《Cell》2011,146(6):969-979
Acetylation of histone and nonhistone proteins is an important posttranslational modification affecting many cellular processes. Here, we report that NuA4 acetylation of Sip2, a regulatory β subunit of the Snf1 complex (yeast AMP-activated protein kinase), decreases as cells age. Sip2 acetylation, controlled by antagonizing NuA4 acetyltransferase and Rpd3 deacetylase, enhances interaction with Snf1, the catalytic subunit of Snf1 complex. Sip2-Snf1 interaction inhibits Snf1 activity, thus decreasing phosphorylation of a downstream target, Sch9 (homolog of Akt/S6K), and ultimately leading to slower growth but extended replicative life span. Sip2 acetylation mimetics are more resistant to oxidative stress. We further demonstrate that the anti-aging effect of Sip2 acetylation is independent of extrinsic nutrient availability and TORC1 activity. We propose a protein acetylation-phosphorylation cascade that regulates Sch9 activity, controls intrinsic aging, and extends replicative life span in yeast. 相似文献
5.
6.
Drew B Phaneuf S Dirks A Selman C Gredilla R Lezza A Barja G Leeuwenburgh C 《American journal of physiology. Regulatory, integrative and comparative physiology》2003,284(2):R474-R480
Mitochondria are chronically exposed to reactive oxygen intermediates. As a result, various tissues, including skeletal muscle and heart, are characterized by an age-associated increase in reactive oxidant-induced mitochondrial DNA (mtDNA) damage. It has been postulated that these alterations may result in a decline in the content and rate of production of ATP, which may affect tissue function, contribute to the aging process, and lead to several disease states. We show that with age, ATP content and production decreased by approximately 50% in isolated rat mitochondria from the gastrocnemius muscle; however, no decline was observed in heart mitochondria. The decline observed in skeletal muscle may be a factor in the process of sarcopenia, which increases in incidence with advancing age. Lifelong caloric restriction, which prolongs maximum life span in animals, did not attenuate the age-related decline in ATP content or rate of production in skeletal muscle and had no effect on the heart. 8-Oxo-7,8-dihydro-2'-deoxyguanosine in skeletal muscle mtDNA was unaffected by aging but decreased 30% with caloric restriction, suggesting that the mechanisms that decrease oxidative stress in these tissues with caloric restriction are independent from ATP availability. The generation of reactive oxygen species, as indicated by H2O2 production in isolated mitochondria, did not change significantly with age in skeletal muscle or in the heart. Caloric restriction tended to reduce the levels of H2O2 production in the muscle but not in the heart. These data are the first to show that an age-associated decline in ATP content and rate of ATP production is tissue specific, in that it occurs in skeletal muscle but not heart, and that mitochondrial ATP production was unaltered by caloric restriction in both tissues. 相似文献
7.
An intervention resembling caloric restriction prolongs life span and retards aging in yeast. 总被引:11,自引:0,他引:11
The yeast Saccharomyces cerevisiae has a finite life span that is measured by the number of daughter cells an individual produces. The 20 genes known to determine yeast life span appear to function in more than one pathway, implicating a variety of physiological processes in yeast longevity. Less attention has been focused on environmental effects on yeast aging. We have examined the role that nutritional status plays in determining yeast life span. Reduction of the glucose concentration in the medium led to an increase in life span and to a delay in appearance of an aging phenotype. The increase in life span was the more extensive the lower the glucose levels. Life extension was also elicited by decreasing the amino acids content of the medium. This suggests that it is the decline in calories and not a particular nutrient that is responsible, in striking similarity to the effect on aging of caloric restriction in mammals. The caloric restriction effect did not require the induction of the retrograde response pathway, which signals the functional status of the mitochondrion and determines longevity. Furthermore, deletion of RTG3, a downstream mediator in this pathway, and caloric restriction had an additive effect, resulting in the largest increase (123%) in longevity described thus far in yeast. Thus, retrograde response and caloric restriction operate along distinct pathways in determining yeast longevity. These pathways may be exclusive, at least in part. This provides evidence for multiple mechanisms of metabolic control in yeast aging. Inasmuch as caloric restriction lowers blood glucose levels, this study raises the possibility that reduced glucose alters aging at the cellular level in mammals. 相似文献
8.
Effects of dietary caloric restriction and aging on thyroid hormones of rhesus monkeys. 总被引:3,自引:0,他引:3
G S Roth A M Handy J A Mattison E M Tilmont D K Ingram M A Lane 《Hormones et métabolisme》2002,34(7):378-382
Plasma levels of thyroid hormones - triiodothyronine (T 3 ), thyroxin (T 4 ), and thyroid-stimulating hormone (TSH) were measured in male and female rhesus monkeys (Macaca mulatta) fed either ad libitum or a 30 % calorie-restricted (CR) diet (males for 11 years; females for 6 years). The same hormones were measured in another group of young male rhesus monkeys during adaptation to the 30 % CR regimen. Both long- and shorter-term CR diet lowered total T 3 in plasma of the monkeys. The effect appeared to be greater in younger monkeys than in older counterparts. No effects of CR diet were detected for either free or total T 4, although unlike T 3, levels of this hormone decreased with age. TSH levels also decreased with age, and were increased by long-term CR diet in older monkeys only. No consistent effects of shorter-term CR diet were observed for TSH. In the light of the effects of the thyroid axis on overall metabolism, these results suggest a possible mechanism by which CR diets may elicit their well-known beneficial 'anti-aging' effects in mammals. 相似文献
9.
10.
Caloric restriction (CR) is the only preventive intervention that has robust pro-longevity effects in experimental models. Various circulating hormones that regulate the state of negative energy balance may drive the multi-system beneficial effects of the CR phenomenon. Ghrelin, one such stomach-derived circulating peptide hormone stimulates food intake, promotes GH release and inhibits pro-inflammatory cytokines. We have recently demonstrated that ghrelin also reverses age-related thymic involution. Here, we report that chronic CR in aging mice results in reduction in body weight, and spleen size but remarkably, leads to a significant increase in the size and weight of stomach. The increased size of stomach was largely due to increased size of fundus (forestomach) and also smaller but statistically significant enlargement of antrum. The analysis of serial stomach sections revealed that chronic CR leads to a striking hypertrophy of lamina propria, stratum basale, stratum corneum and the stratified squamous epithelium of forestomach of the aged animals. We also report for the first time that chronic CR during aging significantly increases circulating ghrelin levels as well as total ghrelin production in the stomach and reverses age-related loss of ghrelin receptor expression in pituitary. Our data suggests that long-term CR-induced increased ghrelin production from hypertrophic stomach in mice may be an adaptive survival strategy in response to sustained negative energy balance that triggers heightened state of food seeking. Taken together, these data provide new insights into the underlying mechanism behind the salutary effects of chronic caloric restriction during aging process. 相似文献
11.
Takahashi S Masuda J Shimagami H Ohta Y Kanda T Saito K Kato H 《Biochemical and biophysical research communications》2011,(3):462-467
The eukaryotic initiation factor 4E (eIF4E) serves as a master switch that controls mRNA translation through the promotive binding to eIF4G and the regulative binding with the endogenous inhibitor 4E-BP. Although the bindings of eIF4G and 4E-BP to eIF4E proceed through the common eIF4E recognition Y(X)4Lφ motif (X: variable, φ: hydrophobic) (first binding site), the relationship between their eIF4E binding mode and the functional difference is hardly known. Recently, we have clarified the existence and function of the second eIF4E binding site in 4E-BP. Surface plasmon resonance (SPR) analysis based on the sequential comparison between 4E-BP and eIF4GI clarified that eIF4G has the second binding site at the periphery of the 597SDVVL601 sequence and that it plays an auxiliary but indispensable function in stabilizing the binding of the first binding sequence 572YDREFLL578. The kinetic parameters of the interactions of the eIF4GI and 4E-BP2 fragment peptides with eIF4E showed that the association (ka) and dissociation (kd) rates of the former peptide are about three and two orders of magnitude lower than those of the latter peptide, respectively. This means that eIF4G has a potent resistive property for release from eIF4E, although its rate of binding to eIF4E is not as high as that of 4E-BP, that is, 4E-BP is apt to bind to and be released from eIF4E, as compared with eIF4G. Isothermal titration calorimetry (ITC) showed the opposite behavior between the second binding sites of eIF4GI and 4E-BP for the interaction with eIF4E. This clearly indicates the importance of the second binding region for the difference in function between eIF4G and 4E-BP for eIF4E translation. 相似文献
12.
13.
Kyung-Mi Choi Hye-Lan Lee Young-Yon Kwon Mi-Sun Kang Sung-Keun Lee Cheol-Koo Lee 《Biochemical and biophysical research communications》2013
Caloric restriction mimetics (CRMs) have been developed to mimic the effects of caloric restriction (CR). However, research reports for the effects of CRMs are often times inconsistent across different research groups. Therefore, in this study, we compared seven identified CRMs which extend the lifespans of various organisms including caffeine, curcumin, dapsone, metformin, rapamycin, resveratrol, and spermidine to CR for mitochondrial function in a single model, Saccharomyces cerevisiae. In this organism, rapamycin extended chronological lifespan (CLS), but other CRMs failed to extend CLS. Rapamycin enhanced mitochondrial function like CR did, but other CRMs did not. Both CR and rapamycin worked on mitochondrial function, but they worked at different windows of time during the chronological aging process. 相似文献
14.
Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria 总被引:14,自引:0,他引:14
The effect of long-term caloric restriction and aging on the rates of mitochondrial H2O2 production and oxygen consumption as well as on oxidative damage to nuclear (nDNA) and mitochondrial DNA (mtDNA) was studied in rat liver tissue. Long-term caloric restriction significantly decreased H2O2 production of rat liver mitochondria (47% reduction) and significantly reduced oxidative damage to mtDNA (46% reduction) with no changes in nDNA. The decrease in ROS production was located at complex I because it only took place with complex I-linked substrates (pyruvate/malate) but not with complex II-linked substrates (succinate). The mechanism responsible for that decrease in ROS production was not a decrease in mitochondrial oxygen consumption because it did not change after long-term restriction. Instead, the caloric restricted mitochondria released less ROS per unit electron flow, due to a decrease in the reduction degree of the complex I generator. On the other hand, increased ROS production with aging in state 3 was observed in succinate-supplemented mitochondria because old control animals were unable to suppress H2O2 production during the energy transition from state 4 to state 3. The levels of 8-oxodG in mtDNA increased with age in old animals and this increase was abolished by caloric restriction. These results support the idea that caloric restriction reduces the aging rate at least in part by decreasing the rate of mitochondrial ROS production and so, the rate of oxidative attack to biological macromolecules like mtDNA. 相似文献
15.
Transcriptomics applied to obesity and caloric restriction 总被引:2,自引:0,他引:2
Caloric restriction still remains the most efficient way to promote weight loss. Deciphering the molecular basis of adaptation to energy restriction is critical for the tailoring of new therapeutic strategies. This review focuses on the recent input of gene profiling on adipose tissue in obesity pathogenesis and on the new insights on adaptations occurring during very low caloric diet (VLCD) in humans. Hypocaloric diets improve a wide range of metabolic parameters including lipolytic efficiency, insulin sensitivity, and inflammatory profile. In the subcutaneous white adipose tissue (scWAT) the VLCD induced a decrease in the mRNA levels for the antilipolytic alpha2-adrenergic receptor associated with changes in catecholamine-induced adipocyte lipolytic capacity. The improvement in insulin sensitivity was not associated with a change in subcutaneous adipose tissue adiponectin gene expression or in its plasma level, suggesting that adiponectin is not involved in the regulation of VLCD-induced improvement of insulin sensitivity and that there is a small contribution of subcutaneous adipose tissue to plasma adiponectin levels. Pangenomic microarray studies in human scWAT revealed that a panel of inflammatory markers and acute phase reactants were over expressed in obese compared to lean subjects. Caloric restriction improved the inflammatory profile of obese subjects through a decrease of pro-inflammatory factors and an increase of anti-inflammatory molecules. These genes were mostly expressed in the stroma vascular fraction of the adipose tissue. Specific cell-type isolation and immunohistochemistry demonstrated that monocyte/macrophage lineage cells were responsible for the expression of both mRNA and protein inflammatory markers. The acute phase proteins serum amyloid A was highly expressed in mature adipocytes from obese subjects. Caloric restriction decreased both serum amyloid mRNA and circulating levels. Obesity now clearly appears as chronic low-grade inflammation state. Modulation of the inflammatory pathways may represent new therapeutic targets for the treatment of obesity-related complications. 相似文献
16.
Hepatic DNA polymerases from calorie restricted and ad libitum 26 month old C57BL/6 mice showed a decline in fidelity of nucleotide incorporation compared with weanling animals. Both alpha and beta polymerases from calorie restricted aged mice exhibited a higher level of fidelity than polymerases from ad libitum aged mice. UV-initiated unscheduled DNA synthesis was significantly higher in hepatocytes from weanling and 18 month old calorie restricted animals compared with cells from 18 month old ad libitum animals, while MMS-initiated unscheduled DNA synthesis did not differ significantly between cells from young and old or ad libitum and calorie restricted animals. These data suggest that calorie restriction could play a significant role in decreasing the age-related decline of cellular mechanisms expected to reduce the rate at which mutations accumulate during aging, and could potentially prolong the onset age of mutation-associated diseases of the elderly. 相似文献
17.
Shoko Takahashi Junko Masuda Hiroshi Shimagami Yutaka Ohta Tomomasa Kanda Kenji Saito Hisanori Kato 《Biochemical and biophysical research communications》2011,(3):462
Caloric restriction (CR) is well known to expand lifespan in a variety of species and to retard many age-related diseases. The effects of relatively mild CR on the proteome profile in relation to lifespan have not yet been reported, despite the more extensive studies of the stricter CR conditions. Thus, the present study was conducted to elucidate the protein profiles in rat livers after mild CR for a relatively short time. Young growing rats were fed CR diets (10% and 30% CR) for 1 month. We performed the differential proteomic analysis of the rat livers using two-dimensional electrophoresis combined with MALDI-TOF mass spectrometry. The most remarkable protein among the differentially expressed proteins was found to be prohibitin, the abundance of which was increased by 30% CR. Prohibitin is a ubiquitously expressed protein shown to suppress cell proliferation and to be related to longevity. The increase in prohibitin was observed both in 10% and 30% CR by Western blot analysis. Furthermore, induction of AMP-activated kinase (AMPK) protein, related to the actions of prohibitin in promoting longevity, was observed. The increased prohibitin level in response to subtle CR suggests that this increase may be one of the early events leading to the expansion of lifespan in response to CR. 相似文献
18.
The effect of aging and caloric restriction on murine CD8+ T cell chemokine receptor gene expression
Raymond Yung RuRan Mo Annabelle Grolleau-Julius Mark Hoeltzel 《Immunity & ageing : I & A》2007,4(1):8-10
Background
The mechanism explaining the increased disease susceptibility in aging is not well understood. CD8+ T cells are crucial in anti-viral and anti-tumor responses. Although the chemokine system plays a critical role in CD8+ T cell function, very little is known about the relationship between aging and the T cell chemokine system. 相似文献19.
D Kritchevsky 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1990,193(1):35-38
Underfeeding or caloric restriction have been shown to inhibit the growth of spontaneous, transplanted, or chemically induced tumors in rats and mice. At 40% caloric restriction, growth of 7,12-dimethylbenz(a)anthracene-induced mammary and 1,2-dimethylhydrazine-induced colonic tumors is inhibited significantly even when the restricted diet contains twice as much fat as the control diet. Some inhibitory effects become evident even at 10% caloric restriction. In studies involving high fat diets, we find that rats receiving 20% fat ad libitum exhibit significantly higher 7,12-dimethylbenz(a)anthracene-induced mammary tumor incidence, multiplicity, and weight than rats ingesting the same amount of fat daily, but in a diet containing 25% fewer calories. In a study of intermittent ad libitum and restrictive feedings, chemically induced tumorigenicity varies inversely with feed efficiency. Exercise has also been shown to inhibit tumor growth. Sedentary rats fed ad libitum have a 108% higher incidence of 1,2-dimethylhydrazine-induced colon tumors than rats fed ad libitum but subjected to vigorous treadmill exercise. Caloric flux (either reduced intake or increased outflow) appears to reduce tumorigenicity in rodents. 相似文献
20.
限制热量摄取(caloric restriction,CR) 能够延长寿命,这个75 年前的发现己得到广泛的证明.其作用主要是由去乙酰化酶 (Sir2/SIRT1)所介导.近年又发现,植物中的多酚化物--白藜芦醇,是SIRT1 的激活剂,它能够模拟 CR 的抗衰老作用,并能防治多种疾病.因此它有可能成为人类防病和抗衰老的有用工具. 相似文献