首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Rinshoken cataract (rct) mutation, which causes congenital cataracts, is a recessive mutation found in SJL/J mice. All mutants present with opacity in the lens by 2?months of age. The rct locus was mapped to a 1.6-Mb region in Chr 4 that contains the Foxe3 gene. This gene is responsible for cataracts in humans and mice, and it plays a crucial role in the development of the lens. Furthermore, mutation of Foxe3 causes various ocular defects. We sequenced the genomic region of Foxe3, including the coding exons and UTRs; however, no mutations were discovered in these regions. Because there were no differences in Foxe3 sequences between the rct/rct and wild-type mice, we inferred that a mutation was located in the regulatory regions of the Foxe3 gene. To test this possibility, we sequenced a 5' noncoding region that is highly conserved among vertebrates and is predicted to be the major enhancer of Foxe3. This analysis revealed a deletion of 22-bp located approximately 3.2-kb upstream of the start codon of Foxe3 in rct mice. Moreover, we demonstrated by RT-PCR and in situ hybridization that the rct mutant has reduced expression of Foxe3 in the lens during development. We therefore suggest that cataracts in rct mice are caused by reduced Foxe3 expression in the lens and that this decreased expression is a result of a deletion in a cis-acting regulatory element.  相似文献   

3.
Here we report the isolation of a novel forkhead gene, Foxe3, that plays an important role in lens formation. During development Foxe3 is expressed in all undifferentiated lens tissues, and is turned off upon fiber cell differentiation. Foxe3 maps to a chromosomal region containing the dysgenetic lens (dyl) mutation. Mice homozygous for dyl display several defects in lens development. dyl mice also show altered patterns of crystallin expression suggesting a dysregulation of lens differentiation. We have identified mutations in Foxe3 that cosegregate with the dyl phenotype and are a likely cause of the mutant phenotype. Head ectoderm expression of Foxe3 is absent in Rx-/- and Small eye embryos indicating that Rx and Pax6 activity are necessary for Foxe3 expression.  相似文献   

4.
5.
6.
7.
8.
The members of the FoxE subfamily of Fox (forkhead) genes are expressed in the developing pituitary, thyroid and lens. Mammalian Foxe1 is expressed primarily in the developing pituitary and thyroid gland, Foxe3 is expressed in the developing lens, while Xenopus FoxE4 is expressed in the developing lens and thyroid. Here we report the identification of Xenopus FoxE1, a gene that is primarily expressed in the developing pituitary and thyroid.  相似文献   

9.
Congenital primary aphakia (CPA) is a rare developmental disorder characterized by the absence of lens, the development of which is normally induced during the 4th-5th wk of human embryogenesis. This original failure leads, in turn, to complete aplasia of the anterior segment of the eye, which is the diagnostic histological criterion for CPA. So far, the genetic basis for this human condition has remained unclear. Here, we present the analysis of a consanguineous family with three siblings who had bilateral aphakia, microphthalmia, and complete agenesis of the ocular anterior segment. We show that a null mutation in the FOXE3 gene segregates and, in the homozygous state, produces the mutant phenotype in this family. Therefore, this study identifies--to our knowledge, for the first time--a causative gene for CPA in humans. Furthermore, it indicates a possible critical role for FOXE3 very early in the lens developmental program, perhaps earlier than any role recognized elsewhere for this gene.  相似文献   

10.
11.
The mab-21 gene was first identified because of its requirement for ray identity specification in Caenorhabditis elegans. It is now known to constitute a family of genes that are highly conserved from vertebrates to invertebrates, and two homologs, Mab21l1 and Mab21l2, have been identified in many species. We describe the generation of Mab21l1-deficient mice with defects in eye and preputial gland formation. The mutant mouse eye has a rudimentary lens resulting from insufficient invagination of the lens placode caused by deficient proliferation. Chimera analyses suggest that the lens placode is affected in a cell-autonomous manner, although Mab21l1 is expressed in both the lens placode and the optic vesicle. The defects in lens placode development correlate with delayed and insufficient expression of Foxe3, which is also required for lens development, while Maf, Sox2, Six3 and PAX6 levels are not significantly affected. Significant reduction of Mab21l1 expression in the optic vesicle and overlying surface ectoderm in Sey homozygotes indicates that Mab21l1 expression in the developing eye is dependent upon the functions of Pax6 gene products. We conclude that Mab21l1 expression dependent on PAX6 is essential for lens placode growth and for formation of the lens vesicle; lack of Mab21l1 expression causes reduced expression of Foxe3 in a cell-autonomous manner.  相似文献   

12.
13.
14.
Extracellular matrix material (ECM) present during early lens morphogenesis was analyzed histochemically in normal CFW mice and mutant strain aphakia by the Alcian blue 8GX, pH 2.5, Alcian blue 8GX, pH 2.5/periodic acid-Schiff combined, high-iron diamine, and van Gieson methods. At lens placode formation, the optic vesicle basal lamina in both strains was higher in sulfated glycosaminoglycan content than was the ectodermal basal lamina. In the aphakia strain, ECM components were observed intercellularly in the presumptive neural retina and lens rudiment of some specimens. This observation was peculiar to the aphakia strain. At the lens cup stage (10.5 days), the interface ECM became less uniformly dense in the CFW strain, resulting in the formation of a fibrillar structure in the widening interspace area. In contrast, the interface ECM in the mutant strain stained solidly and continuously for acidic materials, particularly sulfated glycosaminoglycans, for a full 2 days longer than in the normal strain. The optic cup and lens rudiment remained closely apposed and intercellular ECM components were observed in these tissues in most mutant specimens throughout these stages. The exact mechanism resulting in these intercellular deposits is unknown, although it is possible that they are either pulled along on the cell surface away from the interface ECM during cell shape changes related to the cell cycle or that they are secreted abnormally due to some disturbed cellular polarity. It is unclear at this time if these abnormalities of the ECM in the aphakia strain play a role in the pathogenesis of the multiple eye anomalies, or if they are a secondary effect of the gene mutation.  相似文献   

15.
Variation in the expressivity was studied of the gene for ocular retardation (or) in mice. It is shown that the gene or suppresses with a high expressivity the growth of the optic vesicle in homozygotes, this resulting in anophthalmia and microphthalmia with aphakia. In cases of low expressivity, the gene or inhibits the growth of retina anlage, this leading to microphthalmia with a cataract of the lens. Variation in the expressivity of the gene or is due to an influence of modifier genes.  相似文献   

16.
An analysis of aphakia (ak) gene expression in 16 day ak/ak C/C----+/+ c/c chimaeric embryos has shown, that ak gene, acting in developing lens, blocks lens cell differentiation and disturbs the formation by these cells of the extracellular matrix composing the lens capsule material. The dependence of capsule structure in chimaeras on the genotype of underlying cells indicates that lens cells are responsible for the formation of lens capsule.  相似文献   

17.
Phosphorylation and dephosphorylation are important cellular events regulating major metabolic activities such as signal transduction, gene expression, cell cycle progression, and apoptosis. It is well documented that okadaic acid, a potent inhibitor of protein phosphatase-1 (PP-1) and -2A (PP-2A), can induce apoptosis in a variety of cell lines. Our recent studies have revealed that in the immortal rabbit lens epithelial cell line, N/N1003A, inhibition of PP-1, but not PP-2A, leads to rapid apoptosis of the lens epithelial cells. This induction of cell death is associated with up-regulated expression of a set of genes, including the tumor-suppressor gene, p53, and the proapoptotic gene, bax. In the present study, we demonstrate that inhibition of PP-1 by okadaic acid in the primary cultures of rat lens epithelial cells also leads to apoptotic death. Moreover, we show that the cysteine protease, caspase-3, is important in the execution of okadaic acid-induced apoptosis. Treatment of the primary cultures of rat lens epithelial cells with 100 nM okadaic acid up-regulates expression of caspase-3 at the mRNA, protein, and enzyme activity levels. Inhibition of the caspase-3 activity with a chemically synthesized inhibitor prevents okadaic acid-induced apoptosis in rat lens epithelial cells. Similar results are also observed in the immortal cell line N/N1003A. Furthermore, stable expression of the mouse gene encoding lens alphaB crystallin inhibits okadaic acid-induced apoptosis, and this inhibition is associated with repression of the okadaic acid-induced up-regulation of caspase-3 activity. Taken together, these results demonstrate that caspase-3 is actively involved in okadaic acid-induced lens epithelial cell apoptosis.  相似文献   

18.
Genetic ablation techniques were used to study the role of the lens in mammalian eye development. Ablation was accomplished by microinjecting murine eggs with chimeric DNA constructs in which the alpha A-crystallin gene regulatory sequence (-366 to +46) was fused to the highly cytotoxic diphtheria toxin gene coding sequence. For genetic ablation to be successful the promoter regulating expression should be specific and completely silent in cells necessary for normal mouse development. In this report, we describe the generation and analysis of transgenic mice with this readily discernible phenotype: aphakia or eyes without lens. Of the 109 live-born pups, eight carried the transgene and could be grouped according to the apparent severity of eye malformations. Lines 4, 5 and 6 founder (F0) mice had the most severe phenotype. Histological analysis revealed: marked reduction in eye size, total absence of lens, increased retinal cell density and extensive whorling of the retinal fibre layers. The line 1 F0 mouse displayed a distinct lens opacity and lines 2, 3 and 8 F0 mice were mosaics with a relatively mild, but most unusual phenotype. Their eyes contained a small, highly vacuolated lens. The progeny of these mosaics that inherited the transgene, however, again exhibited the severe phenotype. The aberrant structures of the eyes in which complete genetic ablation of the lens has been achieved suggest that the lens plays a pivotal role in the development of multiple components of the murine eye.  相似文献   

19.
The eye development has been studied in the 12-day-old, 14-day-old embryos and in neonates of Cm/+ ak/ak genotype. The gene coloboma (Cm) in heterozygous state causes a typical coloboma of the iris and the gene aphakia (ak) blocks the lens development in the homozygotes. It has been shown that in Cm/+ ak/ak mice the eyes go through mainly the same abnormal development as that in +/+ ak/ak animals. In mice of both genotypes the lens morphogenesis blocking at the vesicle stage and the retinal fold in the dorsal half of the eye develops. However, the ventral retinal fold which is characteristic for the +/+ ak/ak mice does not form in the Cm/+ ak/ak animals that is the result of the interaction of Cm and ak genes in the eye morphogenesis. The Cm gene suppressing the growth of the retina ventral half inhibits the formation of its fold in Cm/+ ak/ak embryos. As a result of the gene interaction a certain normalization of the eye development compared to the +/+ ak/ak mice is observed in the Cm/+ ak/ak animals. The obtained data show that the Cm gene expresses in the cell clones of the retina ventral half.  相似文献   

20.
Analysis of aphakia (ak) gene expression in ak/ak C/C in equilibrium +/+ c/c experimental chimaeras has shown that the ak gene acts in the lens rudiment cells blocking it differentiation. In the lens of 12 day old ak/ak C/C in equilibrium +/+ c/c chimaeric embryos undifferentiated ak/ak cells were present among the normally differentiating fibres. In 14 and 18 day old chimaeric embryos and 20 day old chimaeric mice ak/ak cells are located under the lens epithelium and the capsule of posterior lens half. In the locations of ak/ak cells on the posterior lens surface capsule breaks resulted in the extrusion of lens material into the secondary eye cavity. In all studied chimaeric embryos the lens structure is more similar to that in the normal embryos, than in ak/ak embryos. This suggests that in the developing chimaeric lens ak/ak cells are sorted out as the development proceeds. The proliferation rate of +/+ cells appears to be higher than that of ak/ak cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号