首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peskova YB  Nakamoto RK 《Biochemistry》2000,39(38):11830-11836
The rate-limiting transition state of steady-state ATP hydrolysis and synthesis reactions in the F(o)F(1) ATP synthase involves the rotation of the gamma, epsilon, and c subunits. To probe the role of the transport and coupling mechanisms in controlling catalysis, kinetic and thermodynamic parameters of ATP hydrolysis were determined for enzymes in the presence of the detergent lauryldimethylamine oxide (LDAO), which uncouples active transport and disables the inhibitory effect of the epsilon subunit. At 5 mM LDAO or greater, the inhibitory effects of epsilon subunit are abrogated in both purified F(1) and membranous F(o)F(1). In these conditions, LDAO solubilized F(o)F(1) has a higher k(cat) for ATP hydrolysis than F(1). These results indicate an influence of F(o) on F(1) even though catalysis is uncoupled from transport. The alpha(3)beta(3)gamma complex free of the epsilon subunit is activated at a lower concentration of 0.5 mM LDAO. Significantly, the gammaY205C mutant enzyme is similarly activated at 0.5 mM LDAO, suggesting that the mutant enzyme lacks epsilon inhibition. The gammaY205C F(o)F(1), which has a k(cat) for ATP hydrolysis 2-fold higher than wild type, has an ATP synthesis rate 3-fold lower than wild type, showing that coupling is inefficient. Arrhenius and isokinetic analyses indicate that enzymes that are free of epsilon subunit inhibition have a different transition-state structure from those under the influence of the epsilon subunit. We propose that the epsilon subunit is one of the factors that determines the proper transition-state structure, which is essential for efficient coupling.  相似文献   

2.
F(1)-ATPase is an ATP hydrolysis-driven motor in which the gamma subunit rotates in the stator cylinder alpha(3)beta(3). To know the coordination of three catalytic beta subunits during catalysis, hybrid F(1)-ATPases, each containing one, two, or three "slow" mutant beta subunits that bind ATP very slowly, were prepared, and the rotations were observed with a single molecule level. Each hybrid made one, two, or three steps per 360 degrees revolution, respectively, at 5 microm ATP where the wild-type enzyme rotated continuously without step under the same observing conditions. The observed dwell times of the steps are explained by the slow binding rate of ATP. Except for the steps, properties of rotation, such as the torque forces exerted during rotary movement, were not significantly changed from those of the wild-type enzyme. Thus, it appears that the presence of the slow beta subunit(s) does not seriously affect other normal beta subunit(s) in the same F(1)-ATPase molecule and that the order of sequential catalytic events is faithfully maintained even when ATP binding to one or two of the catalytic sites is retarded.  相似文献   

3.
Molecular mechanisms of rotational catalysis in the F(0)F(1) ATP synthase   总被引:1,自引:0,他引:1  
Rotation of the F(0)F(1) ATP synthase gamma subunit drives each of the three catalytic sites through their reaction pathways. The enzyme completes three cycles and synthesizes or hydrolyzes three ATP for each 360 degrees rotation of the gamma subunit. Mutagenesis studies have yielded considerable information on the roles of interactions between the rotor gamma subunit and the catalytic beta subunits. Amino acid substitutions, such as replacement of the conserved gammaMet-23 by Lys, cause altered interactions between gamma and beta subunits that have dramatic effects on the transition state of the steady state ATP synthesis and hydrolysis reactions. The mutations also perturb transmission of specific conformational information between subunits which is important for efficient conversion of energy between rotation and catalysis, and render the coupling between catalysis and transport inefficient. Amino acid replacements in the transport domain also affect the steady state catalytic transition state indicating that rotation is involved in coupling to transport.  相似文献   

4.
The gamma subunit of the ATP synthase F(1) sector rotates at the center of the alpha(3)beta(3) hexamer during ATP hydrolysis. A gold bead (40-200 nm diameter) was attached to the gamma subunit of Escherichia coli F(1), and then its ATP hydrolysis-dependent rotation was studied. The rotation speeds were variable, showing stochastic fluctuation. The high-speed rates of 40- and 60-nm beads were essentially similar: 721 and 671 rps (revolutions/s), respectively. The average rate of 60-nm beads was 381 rps, which is approximately 13-fold faster than that expected from the steady-state ATPase turnover number. These results indicate that the F(1) sector rotates much faster than expected from the bulk of ATPase activity, and that approximately 10% of the F(1) molecules are active on the millisecond time scale. Furthermore, the real ATP turnover number (number of ATP molecules converted to ADP and phosphate/s), as a single molecule, is variable during a short period. The epsilon subunit inhibited rotation and ATPase, whereas epsilon fused through its carboxyl terminus to cytochrome b(562) showed no effect. The epsilon subunit significantly increased the pausing time during rotation. Stochastic fluctuation of catalysis may be a general property of an enzyme, although its understanding requires combining studies of steady-state kinetics and single molecule observation.  相似文献   

5.
The central stalk in ATP synthase, made of gamma, delta and epsilon subunits in the mitochondrial enzyme, is the key rotary element in the enzyme's catalytic mechanism. The gamma subunit penetrates the catalytic (alpha beta)(3) domain and protrudes beneath it, interacting with a ring of c subunits in the membrane that drives rotation of the stalk during ATP synthesis. In other crystals of F(1)-ATPase, the protrusion was disordered, but with crystals of F(1)-ATPase inhibited with dicyclohexylcarbodiimide, the complete structure was revealed. The delta and epsilon subunits interact with a Rossmann fold in the gamma subunit, forming a foot. In ATP synthase, this foot interacts with the c-ring and couples the transmembrane proton motive force to catalysis in the (alpha beta)(3) domain.  相似文献   

6.
Since the report by Sternweis and Smith (Sternweis, P. C., and Smith, J. B. (1980) Biochemistry 19, 526-531), the epsilon subunit, an endogenous inhibitor of bacterial F(1)-ATPase, has long been thought not to inhibit activity of the holo-enzyme, F(0)F(1)-ATPase. However, we report here that the epsilon subunit is exerting inhibition in F(0)F(1)-ATPase. We prepared a C-terminal half-truncated epsilon subunit (epsilon(DeltaC)) of the thermophilic Bacillus PS3 F(0)F(1)-ATPase and reconstituted F(1)- and F(0)F(1)-ATPase containing epsilon(DeltaC). Compared with F(1)- and F(0)F(1)-ATPase containing intact epsilon, those containing epsilon(DeltaC) showed uninhibited activity; severalfold higher rate of ATP hydrolysis at low ATP concentration and the start of ATP hydrolysis without an initial lag at high ATP concentration. The F(0)F(1)-ATPase containing epsilon(DeltaC) was capable of ATP-driven H(+) pumping. The time-course of pumping at low ATP concentration was faster than that by the F(0)F(1)-ATPase containing intact epsilon. Thus, the comparison with noninhibitory epsilon(DeltaC) mutant shed light on the inhibitory role of the intact epsilon subunit in F(0)F(1)-ATPase.  相似文献   

7.
F(1)F(0) ATP synthases are known to synthesize ATP by rotary catalysis in the F(1) sector of the enzyme. Proton translocation through the F(0) membrane sector is now proposed to drive rotation of an oligomer of c subunits, which in turn drives rotation of subunit gamma in F(1). The primary emphasis of this review will be on recent work from our laboratory on the structural organization of F(0), which proves to be consistent with the concept of a c(12) oligomeric rotor. From the NMR structure of subunit c and cross-linking studies, we can now suggest a detailed model for the organization of the c(12) oligomer in F(0) and some of the transmembrane interactions with subunits a and b. The structural model indicates that the H(+)-carrying carboxyl of subunit c is located between subunits of the c(12) oligomer and that two c subunits pack in a front-to-back manner to form the proton (cation) binding site. The proton carrying Asp61 side chain is occluded between subunits and access to it, for protonation and deprotonation via alternate entrance and exit half-channels, requires a swiveled opening of the packed c subunits and stepwise association with different transmembrane helices of subunit a. We suggest how some of the structural information can be incorporated into models of rotary movement of the c(12) oligomer during coupled synthesis of ATP in the F(1) portion of the molecule.  相似文献   

8.
Pyridoxal phosphate (PLP) and adenosine diphospho (AP2-PL)-, triphospho (AP3-PL)-, and tetraphospho (AP4-PL)-pyridoxals (Tagaya, M., and Fukui, T. (1986) Biochemistry 25, 2958-2964) were tested as potential affinity probes for F1 ATPase of Escherichia coli. Both AP3-PL and AP4-PL bound and inhibited F1 ATPase, whereas PLP and AP2-PL were weak inhibitors. The concentrations of AP3-PL and AP4-PL for half-maximal inactivations of the multisite (steady state) ATPase activity were both 18 microM. The binding of these reagents to a reactive lysyl residue(s) was confirmed from the difference absorption spectra, and the stoichiometry of binding of [3H]AP3-PL to F1 at the saturating level was about 1 mol/mol F1. The analogue bound to both the alpha subunit (about two-thirds of the radioactivity) and the beta subunit (about one-third of the radioactivity). No inactivation of multisite ATPase activity or binding of AP3-PL was observed in the presence of ATP. F1 modified with about one mol of AP3-PL had essentially no uni- and multisite hydrolysis of ATP. The rate of binding of ATP decreased to 10(-2) of that of unmodified F1, and the rate of release of ATP was about two times faster. The equilibrium F1 X ATP in equilibrium F1 X ADP X Pi was shifted toward F1 X ATP, and no promotion of ATP hydrolysis at unisite was observed with excess ATP. These results suggest that the AP3-PL or AP4-PL bound to an active site, and catalysis by the two remaining sites was completely abolished.  相似文献   

9.
Structure-function relationships of the gamma-epsilon-c subunit interface of F(O)F(1) ATP synthase, a region of subunit interactions important in coupling between catalysis and transport, were investigated by site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. The EPR line widths and collision accessibilities of 18 spin-labeled, unique cysteine F(1) mutants from gammaLeu198 to gammaLeu215 indicate an alternating pattern in the mobility and accessibility parameters for positions gamma201-209, which is reminiscent of a beta-strand. Labels at positions gamma204 and gamma210 show tertiary contact upon F(1) binding to F(O) and gammaD210C has reduced coupling efficiency. gammaE208C could not be spin labeled, but the uncoupling effects of gammaE208K are suppressed by second-site mutations in the polar loop of subunit c [Ketchum, C. J. and Nakamoto, R. K. (1998) J. Biol. Chem. 273, 22292-22297]. The restricted mobility and accessibility of spin labels in the odd-numbered positions between gamma201 and gamma207 plus the 2-4-fold higher values in k(cat) for ATP hydrolysis of these same mutant F(1) indicate that the interactions of these residues with the epsilon subunit mediate its inhibitory activity. Disrupted interactions with epsilon subunit also cause reduced coupling efficiency. We propose a model for the gamma-epsilon-c interface of Escherichia coli F(O)F(1) ATP synthase in which side chains from the odd-numbered residues of the gammaLys201-gammaTyr207 beta-strand directly and functionally interact with the epsilon subunit, while the even-numbered, acidic residues gammaAsp204, gammaGlu208, and gammaAsp210 interact with the F(O) sector, probably with subunit c. gamma Subunit interactions with both subunits in this region are important for coupling efficiency.  相似文献   

10.
Le NP  Omote H  Wada Y  Al-Shawi MK  Nakamoto RK  Futai M 《Biochemistry》2000,39(10):2778-2783
The three catalytic sites of the F(O)F(1) ATP synthase interact through a cooperative mechanism that is required for the promotion of catalysis. Replacement of the conserved alpha subunit Arg-376 in the Escherichia coli F(1) catalytic site with Ala or Lys resulted in turnover rates of ATP hydrolysis that were 2 x 10(3)-fold lower than that of the wild type. Mutant enzymes catalyzed hydrolysis at a single site with kinetics similar to that of the wild type; however, addition of excess ATP did not chase bound ATP, ADP, or Pi from the catalytic site, indicating that binding of ATP to the second and third sites failed to promote release of products from the first site. Direct monitoring of nucleotide binding in the alphaR376A and alphaR376K mutant F(1) by a tryptophan in place of betaTyr-331 (Weber et al. (1993) J. Biol. Chem. 268, 20126-20133) showed that the catalytic sites of the mutant enzymes, like the wild type, have different affinities and therefore, are structurally asymmetric. These results indicate that alphaArg-376, which is close to the beta- or gamma-phosphate group of bound ADP or ATP, respectively, does not make a significant contribution to the catalytic reaction, but coordination of the arginine to nucleotide filling the low-affinity sites is essential for promotion of rotational catalysis to steady-state turnover.  相似文献   

11.
Two ATPases     
In this article, I reflect on research on two ATPases. The first is F(1)F(0)-ATPase, also known as ATP synthase. It is the terminal enzyme in oxidative phosphorylation and famous as a nanomotor. Early work on mitochondrial enzyme involved purification in large amount, followed by deduction of subunit composition and stoichiometry and determination of molecular sizes of holoenzyme and individual subunits. Later work on Escherichia coli enzyme utilized mutagenesis and optical probes to reveal the molecular mechanism of ATP hydrolysis and detailed facets of catalysis. The second ATPase is P-glycoprotein, which confers multidrug resistance, notably to anticancer drugs, in mammalian cells. Purification of the protein in large quantity allowed detailed characterization of catalysis, formulation of an alternating sites mechanism, and recently, advances in structural characterization.  相似文献   

12.
V(1)-ATPase from the thermophilic bacterium Thermus thermophilus is a molecular rotary motor with a subunit composition of A(3)B(3)DF, and its central rotor is composed of the D and F subunits. To determine the role of the F subunit, we generated an A(3)B(3)D subcomplex and compared it with A(3)B(3)DF. The ATP hydrolyzing activity of A(3)B(3)D (V(max) = 20 s(-1)) was lower than that of A(3)B(3)DF (V(max) = 31 s(-1)) and was more susceptible to MgADP inhibition during ATP hydrolysis. A(3)B(3)D was able to bind the F subunit to form A(3)B(3)DF. The C-terminally truncated F((Delta85-106)) subunit was also bound to A(3)B(3)D, but the F((Delta69-106)) subunit was not, indicating the importance of residues 69-84 of the F subunit for association with A(3)B(3)D. The ATPase activity of A(3)B(3)DF((Delta85-106)) (V(max) = 24 s(-1)) was intermediate between that of A(3)B(3)D and A(3)B(3)DF. A single molecule experiment showed the rotation of the D subunit in A(3)B(3)D, implying that the F subunit is a dispensable component for rotation itself. Thus, the F subunit binds peripherally to the D subunit, but promotes V(1)-ATPase catalysis.  相似文献   

13.
This review concerns the catalytic sector of F1 factor of the H+-dependent ATPases in mitochondria (MF1), bacteria (BF1) and chloroplasts (CF1). The three types of F1 have many similarities with respect to the structural parameters, subunit composition and catalytic mechanism. An alpha 3 beta 3 gamma delta epsilon stoichiometry is now accepted for MF1 and BF1; the alpha 2 beta 2 gamma 2 delta 2 epsilon 2 stoichiometry for CF1 remains as matter of debate. The major subunits alpha, beta and gamma are equivalent in MF1, BF1 and CF1; this is not the case for the minor subunits delta and epsilon. The delta subunit of MF1 corresponds to the epsilon subunit of BF1 and CF1, whereas the mitochondrial subunit equivalent to the delta subunit of BF1 and CF1 is probably the oligomycin sensitivity conferring protein (OSCP). The alpha beta gamma assembly is endowed with ATPase activity, beta being considered as the catalytic subunit and gamma as a proton gate. On the other hand, the delta and epsilon subunits of BF1 and CF1 most probably act as links between the F1 and F0 sectors of the ATPase complex. The natural mitochondrial ATPase inhibitor, which is a separate protein loosely attached to MF1, could have its counterpart in the epsilon subunit of BF1 and CF1. The generally accepted view that the catalytic subunit in the different F1 species is beta comes from a number of approaches, including chemical modification, specific photolabeling and, in the case of BF1, use of mutants. The alpha subunit also plays a central role in catalysis, since structural alteration of alpha by chemical modification or mutation results in loss of activity of the whole molecule of F1. The notion that the proton motive force generated by respiration is required for conformational changes of the F1 sector of the H+-ATPase complex has gained acceptance. During the course of ATP synthesis, conversion of bound ADP and Pi into bound ATP probably requires little energy input; only the release of the F1-bound ATP would consume energy. ADP and Pi most likely bind at one catalytic site of F1, while ATP is released at another site. This mechanism, which underlines the alternating cooperativity of subunits in F1, is supported by kinetic data and also by the demonstration of partial site reactivity in inactivation experiments performed with selective chemical modifiers. One obvious advantage of the alternating site mechanism is that the released ATP cannot bind to its original site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
We discuss the most recent reports on two proton pumps, F-ATPase (ATP synthase) and V-ATPase (endomembrane proton pump). They are formed from similar extrinsic (F1 or V1) and intrinsic (Fo or Vo) membrane sectors, and couple chemistry and proton transport through subunit rotation for apparently different physiological roles. Emphasis is placed on the stochastic rotational catalysis of F-ATPase and isoforms of V-ATPase.  相似文献   

15.
Boltz KW  Frasch WD 《Biochemistry》2005,44(27):9497-9506
In Escherichia coli F(1)F(o) ATP synthase, gammaT273 mutants that eliminate the ability to form a hydrogen bond to betaV265 were incapable of ATP synthase-dependent growth and ATPase-dependent proton pumping, had very low rates of ATPase activity catalyzed by purified F(1), and had significantly decreased sensitivity to inhibition by Mg(2+)-ADP-AlF(n) species, while gammaT273D and gammaT273N mutants which maintained or increased the hydrogen bond strength maintained or increased catalytic activity. The betaP262G mutation that increases the potential flexibility of the rigid sleeve that surrounds the gamma subunit C-terminus also virtually eliminated ATPase activity and susceptibility to Mg(2+)-ADP-AlF(n) inhibition. The gammaE275 mutants that retained the ability to form the betaV265 hydrogen bond had higher ATPase activity than those that eliminated the hydrogen bond. These results provide evidence that the ability to form hydrogen bonds between betaV265 and the gamma subunit C-terminus contributes significantly to the rate-limiting step of catalysis and to the ability of the F(1)F(o) ATP synthase to use a proton gradient to drive ATP synthesis. The loss of activity observed with betaP262G may result from increased flexibility conferred by glycine that decreases the efficiency of communication between the gamma subunit-betaV265 hydrogen bonds and the Walker B aspartate at the catalytic site. The partial loss of coupling observed with gammaT273 mutants that eliminate the betaV265 hydrogen bond is consistent with participation of this hydrogen bond in the escapement mechanism for ATP synthesis in which interactions between the gamma subunit and (alphabeta)(3) ring prevent rotation until the empty catalytic site binds substrate.  相似文献   

16.
Trypsin cleavage has been used to probe structure-function relationships of the Escherichia coli ATP synthase (ECF1F0). Trypsin cleaved all five subunits, alpha, beta, gamma, delta, and epsilon, in isolated ECF1. Cleavage of the alpha subunit involved the removal of the N-terminal 15 residues, the beta subunit was cleaved near the C-terminus, the gamma subunit was cleaved near Ser202, and the delta and epsilon subunits appeared to be cleaved at several sites to yield small peptide fragments. Trypsin cleavage of ECF1 enhanced the ATPase activity between 6- and 8-fold in different preparations, in a time course that followed the cleavage of the epsilon subunit. This removal of the epsilon subunit increased multisite ATPase activity but not unisite ATPase activity, showing that the inhibitory role of the epsilon subunit is due to an effect on cooperativity. The detergent lauryldimethylamine oxide was found to increase multisite catalysis and also increase unisite catalysis more than 2-fold. Prolonged trypsin cleavage left a highly active ATPase containing only the alpha and beta subunits along with two fragments of the gamma subunit. All of the subunits of ECF1 were cleaved by trypsin in preparations of ECF1F0 at the same sites as in isolated ECF1. Two subunits, the beta and epsilon subunits, were cleaved at the same rate in ECF1F0 as in ECF1 alone. The alpha, gamma, and delta subunits were cleaved significantly more slowly in ECF1F0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
ATP synthase consists of two portions, F(1) and F(o), connected by two stalks: a central rotor stalk containing gamma and epsilon subunits and a peripheral, second stalk formed by delta and two copies of F(o)b subunits. The second stalk is expected to keep the stator subunits from spinning along with the rotor. We isolated a TF(1)-b'(2) complex (alpha(3)beta(3)gammadeltaepsilonb'(2)) of a thermophilic Bacillus PS3, in which b' was a truncated cytoplasmic fragment of F(o)b subunit, and introduced a cysteine at its N terminus (bc'). Association of b'(2) or bc'(2) with TF(1) did not have significant effect on ATPase activity. A disulfide bond between the introduced cysteine of bc' and cysteine 109 of gamma subunit was readily formed, and this cross-link caused inactivation of ATPase. This implies that F(o)b subunit bound to stator subunits of F(1) with enough strength to resist rotation of gamma subunit and to prevent catalysis. Contrary to this apparent tight binding, some detergents such as lauryldodecylamine oxide tend to cause release of b'(2) from TF(1).  相似文献   

18.
Two highly conserved amino acid residues, an arginine and a glutamine, located near the C-terminal end of the gamma subunit, form a "catch" by hydrogen bonding with residues in an anionic loop on one of the three catalytic beta subunits of the bovine mitochondrial F1-ATPase [Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. The catch is considered to play a critical role in the binding change mechanism whereby binding of ATP to one catalytic site releases the catch and induces a partial rotation of the gamma subunit. This role is supported by the observation that mutation of the equivalent arginine and glutamine residues in the Escherichia coli F1 gamma subunit drastically reduced all ATP-dependent catalytic activities of the enzyme [Greene, M. D., and Frasch, W. D. (2003) J. Biol. Chem. 278, 5194-5198]. In this study, we show that simultaneous substitution of the equivalent residues in the chloroplast F1 gamma subunit, arginine 304 and glutamine 305, with alanine decreased the level of proton-coupled ATP synthesis by more than 80%. Both the Mg2+-dependent and Ca2+-dependent ATP hydrolysis activities increased by more than 3-fold as a result of these mutations; however, the sulfite-stimulated activity decreased by more than 60%. The Mg2+-dependent, but not the Ca2+-dependent, ATPase activity of the double mutant was insensitive to inhibition by the phytotoxic inhibitor tentoxin, indicating selective loss of catalytic cooperativity in the presence of Mg2+ ions. The results indicate that the catch residues are required for efficient proton coupling and for activation of multisite catalysis when MgATP is the substrate. The catch is not, however, required for CaATP-driven multisite catalysis or, therefore, for rotation of the gamma subunit.  相似文献   

19.
Two stalks link the F(1) and F(0) sectors of ATP synthase. The central stalk contains the gamma and epsilon subunits and is thought to function in rotational catalysis as a rotor driving conformational changes in the catalytic alpha(3)beta(3) complex. The two b subunits and the delta subunit associate to form b(2)delta, a second, peripheral stalk extending from the membrane up the side of alpha(3)beta(3) and binding to the N-terminal regions of the alpha subunits, which are approx. 125 A from the membrane. This second stalk is essential for binding F(1) to F(0) and is believed to function as a stator during rotational catalysis. In vitro, b(2)delta is a highly extended complex held together by weak interactions. Recent work has identified the domains of b which are essential for dimerization and for interaction with delta. Disulphide cross-linking studies imply that the second stalk is a permanent structure which remains associated with one alpha subunit or alphabeta pair. However, the weak interactions between the polypeptides in b(2)delta pose a challenge for the proposed stator function.  相似文献   

20.
The beta subunit isolated from the chloroplast ATP synthase F1 (CF1) has a single dissociable nucleotide binding site, consistent with the proposed function of this subunit in nucleotide binding and catalysis. The beta subunit bound the nucleotide analogs trinitrophenyl-ATP (TNP-ATP) or trinitrophenyl-ADP (TNP-ADP) with nearly equal affinities (Kd = 1-2 microM) but did not bind trinitrophenyl-AMP. Both ATP and ADP effectively competed with TNP-ATP for binding. Other nucleoside triphosphates were also able to compete with TNP-ATP for binding to beta; their order of effectiveness (ATP greater than GTP, ITP greater than CTP) mimicked the normal substrate specificity of CF1. The single nucleotide binding site on the isolated beta subunit very closely resembles the low affinity catalytic site (site 3) of CF1 (Bruist, M.F., and Hammes, G. G. (1981) Biochemistry 20, 6298-6305), suggesting that tight nucleotide binding by other sites on the enzyme involves other CF1 subunits in addition to the beta subunit. The results are inconsistent with an earlier report (Frasch, W.D., Green, J., Caguial, J., and Mejia, A. (1989) J. Biol. Chem. 264, 5064-5069), which suggested more than one nucleotide binding site per beta subunit. Binding of nucleotides to the isolated beta subunit was eliminated by a brief heat treatment (40 degrees C for 10 min) of the protein. A small change in the circular dichroism spectrum of beta accompanied the heat treatment indicating that a localized (rather than global) change in the folding of beta, involving at least part of the nucleotide binding domain, had occurred. Also accompanying the loss of nucleotide binding was a loss of the reconstitutive capacity of the beta subunit. ATP protected against the effects of the heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号