首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the properties of a simple discrete time stochastic epidemic model. The model is Markovian of the SIR type in which the total population is constant and individuals meet a random number of other individuals at each time step. Individuals remain infectious for R time units, after which they become removed or immune. Individual transition probabilities from susceptible to diseased states are given in terms of the binomial distribution. An expression is given for the probability that any individuals beyond those initially infected become diseased. In the model with a finite recovery time R, simulations reveal large variability in both the total number of infected individuals and in the total duration of the epidemic, even when the variability in number of contacts per day is small. In the case of no recovery, R=infinity, a formal diffusion approximation is obtained for the number infected. The mean for the diffusion process can be approximated by a logistic which is more accurate for larger contact rates or faster developing epidemics. For finite R we then proceed mainly by simulation and investigate in the mean the effects of varying the parameters p (the probability of transmission), R, and the number of contacts per day per individual. A scale invariant property is noted for the size of an outbreak in relation to the total population size. Most notable are the existence of maxima in the duration of an epidemic as a function of R and the extremely large differences in the sizes of outbreaks which can occur for small changes in R. These findings have practical applications in controlling the size and duration of epidemics and hence reducing their human and economic costs.  相似文献   

2.
3.
A central issue of neuroscience is to understand how neural units integrates internal and external signals to create coherent states. Recently, it has been shown that the sensitivity and dynamic range of neural assemblies are optimal at a critical coupling among its elements. Complex architectures of connections seem to play a constructive role on the reliable coordination of neural units. Here we show that, the synchronizability and sensitivity of excitable neural networks can be tuned by diversity in the connections strengths. We illustrate our findings for weighted networks with regular, random and complex topologies. Additional comparisons of real brain networks support previous studies suggesting that heterogeneity in the connectivity may play a constructive role on information processing. These findings provide insights into the relationship between structure and function of neural circuits.  相似文献   

4.
Recent work by Volz (J Math Biol 56:293–310, 2008) has shown how to calculate the growth and eventual decay of an SIR epidemic on a static random network, assuming infection and recovery each happen at constant rates. This calculation allows us to account for effects due to heterogeneity and finiteness of degree that are neglected in the standard mass-action SIR equations. In this note we offer an alternate derivation which arrives at a simpler—though equivalent—system of governing equations to that of Volz. This new derivation is more closely connected to the underlying physical processes, and the resulting equations are of comparable complexity to the mass-action SIR equations. We further show that earlier derivations of the final size of epidemics on networks can be reproduced using the same approach, thereby providing a common framework for calculating both the dynamics and the final size of an epidemic spreading on a random network. Under appropriate assumptions these equations reduce to the standard SIR equations, and we are able to estimate the magnitude of the error introduced by assuming the SIR equations.  相似文献   

5.
During an epidemic outbreak in a human population, susceptibility to infection can be reduced by raising awareness of the disease. In this paper, we investigate the effects of three forms of awareness (i.e., contact, local, and global) on the spread of a disease in a random network. Connectivity-correlated transmission rates are assumed. By using the mean-field theory and numerical simulation, we show that both local and contact awareness can raise the epidemic thresholds while the global awareness cannot, which mirrors the recent results of Wu et al. The obtained results point out that individual behaviors in the presence of an infectious disease has a great influence on the epidemic dynamics. Our method enriches mean-field analysis in epidemic models.  相似文献   

6.
We consider a (social) network whose structure can be represented by a simple random graph having a pre-specified degree distribution. A Markovian susceptible-infectious-removed (SIR) epidemic model is defined on such a social graph. We then consider two real-time vaccination models for contact tracing during the early stages of an epidemic outbreak. The first model considers vaccination of each friend of an infectious individual (once identified) independently with probability ρ. The second model is related to the first model but also sets a bound on the maximum number an infectious individual can infect before being identified. Expressions are derived for the influence on the reproduction number of these vaccination models. We give some numerical examples and simulation results based on the Poisson and heavy-tail degree distributions where it is shown that the second vaccination model has a bigger advantage compared to the first model for the heavy-tail degree distribution.  相似文献   

7.
We present a thorough inspection of the dynamical behavior of epidemic phenomena in populations with complex and heterogeneous connectivity patterns. We show that the growth of the epidemic prevalence is virtually instantaneous in all networks characterized by diverging degree fluctuations, independently of the structure of the connectivity correlation functions characterizing the population network. By means of analytical and numerical results, we show that the outbreak time evolution follows a precise hierarchical dynamics. Once reached the most highly connected hubs, the infection pervades the network in a progressive cascade across smaller degree classes. Finally, we show the influence of the initial conditions and the relevance of statistical results in single case studies concerning heterogeneous networks. The emerging theoretical framework appears of general interest in view of the recently observed abundance of natural networks with complex topological features and might provide useful insights for the development of adaptive strategies aimed at epidemic containment.  相似文献   

8.
We consider a spatial model related to bond percolation for the spread of a disease that includes variation in the susceptibility to infection. We work on a lattice with random bond strengths and show that with strong heterogeneity, i.e. a wide range of variation of susceptibility, patchiness in the spread of the epidemic is very likely, and the criterion for epidemic outbreak depends strongly on the heterogeneity. These results are qualitatively different from those of standard models in epidemiology, but correspond to real effects. We suggest that heterogeneity in the epidemic will affect the phylogenetic distance distribution of the disease-causing organisms. We also investigate small world lattices, and show that the effects mentioned above are even stronger.  相似文献   

9.
The increasing level of disease control by vaccination jointly with the growing standard of living and health of modern societies could favour the spread of exemption as a "rational" behaviour towards vaccination. Rational exemption implies that families will tend to relate the decision to vaccinate their children to the available information on the state of the disease. Using an SIR model with information dependent vaccination we show that rational exemption might make elimination of the disease an unfeasible task even if coverages as high as 100% are actually reached during epochs of high social alarm. Moreover, we show that rational exemption may also become responsible for the onset of sustained oscillations when the decision to vaccinate also depends on the past history of the disease.  相似文献   

10.
Connectivity is critical to the maintenance of biodiversity in fragmented landscapes, but its effects differ depending on the arrangement of linkages within a habitat network. Additionally, heterogeneity in habitat quality within the habitat network can alter patterns of diversity at local and regional scales in the metacommunity. Using a controlled experiment we examined the interactive effects of habitat connectivity, network form (linear vs square), and habitat patch quality on a moss‐inhabiting microarthropod community. We fragmented moss habitat while controlling for habitat loss, and altered habitat patch quality by regulating moisture conditions in landscapes differing in patch arrangement. Habitat patch quality had a significant effect on patterns of species richness, extinction, abundance and biomass. The effects of network form on diversity were strongest in heterogeneous landscapes. Gamma and beta diversity were greatest in continuous and linear landscapes. However, linear habitat networks showed marked patch specific edge effects that were detrimental to diversity under heterogeneous conditions. We provide direct evidence that habitat network structure impacts species community properties through mass effects, that are most evident when heterogeneity in habitat patch quality is present within the network. We conclude that habitat quality at the individual patch level and the distribution of high‐quality habitat within the network are important factors affecting biodiversity in metacommunities.  相似文献   

11.
Sustained oscillations in a stochastic SIR model are studied using a new multiple scale analysis. It captures the interaction of the deterministic and stochastic elements together with the separation of time scales inherent in the appearance of these dynamics. The nearly regular fluctuations in the infected and susceptible populations are described via an explicit construction of a stochastic amplitude equation. The agreement between the power spectral densities of the full model and the approximation verifies that coherence resonance is driving the behavior. The validity criteria for this asymptotic approximation give explicit expressions for the parameter ranges in which one expects to observe this phenomenon.  相似文献   

12.
The process of infection during an epidemic can be envisaged as being transmitted via a network of routes represented by a contact network. Most differential equation models of epidemics are mean-field models. These contain none of the underlying spatial structure of the contact network. By extending the mean-field models to pair-level, some of the spatial structure can be contained in the model. Some networks of transmission such as river or transportation networks are clearly asymmetric, whereas others such as airborne infection can be regarded as symmetric. Pair-level models have been developed to describe symmetric contact networks. Here we report on work to develop a pair-level model that is also applicable to asymmetric contact networks. The procedure for closing the model at the level of pairs is discussed in detail. The model is compared against stochastic simulations of epidemics on asymmetric contact networks and against the predictions of the symmetric model on the same networks. DEFRA funded project FC1153  相似文献   

13.
A grid-based random walk model has been developed to simulate animal dispersal, taking landscape heterogeneity and linear barriers such as roads and rivers into account The model can be used to estimate connectivity and has been parametenzed for the badger in the central Netherlands The importance of key parameters was evaluated by means of sensitivity analysis Results agree with field observations, and give interesting insight into the isolation of populations and potential populations The model can be applied to obtain knowledge about dispersal processes in complex landscapes  相似文献   

14.
15.
Most human tumors result from the accumulation of multiple genetic and epigenetic alterations in a single cell. Mutations that confer a fitness advantage to the cell are known as driver mutations and are causally related to tumorigenesis. Other mutations, however, do not change the phenotype of the cell or even decrease cellular fitness. While much experimental effort is being devoted to the identification of the functional effects of individual mutations, mathematical modeling of tumor progression generally considers constant fitness increments as mutations are accumulated. In this paper we study a mathematical model of tumor progression with random fitness increments. We analyze a multi-type branching process in which cells accumulate mutations whose fitness effects are chosen from a distribution. We determine the effect of the fitness distribution on the growth kinetics of the tumor. This work contributes to a quantitative understanding of the accumulation of mutations leading to cancer.  相似文献   

16.
17.
    
A Reed-Frost epidemic with inhomogeneous infection probabilities on a graph with prescribed degree distribution is studied. Each edge (uv) in the graph is equipped with two weights W(u,v) and W(v,u) that represent the (subjective) strength of the connection and determine the probability that u infects v in case u is infected and vice versa. Expressions for the epidemic threshold are derived for i.i.d. weights and for weights that are functions of the degrees. For i.i.d. weights, a variation of the so called acquaintance vaccination strategy is analyzed where vertices are chosen randomly and neighbors of these vertices with large edge weights are vaccinated. This strategy is shown to outperform the strategy where the neighbors are chosen randomly in the sense that the basic reproduction number is smaller for a given vaccination coverage.  相似文献   

18.
The paper investigates a class of SIS models of the evolution of an infectious disease in a heterogeneous population. The heterogeneity reflects individual differences in the susceptibility or in the contact rates and leads to a distributed parameter system, requiring therefore, distributed initial data, which are often not available. It is shown that there exists a corresponding homogeneous (ODE) population model that gives the same aggregated results as the distributed one, at least in the expansion phase of the disease. However, this ODE model involves a nonlinear “prevalence-to-incidence” function which is not constructively defined. Based on several established properties of this function, a simple class of approximating function is proposed, depending on three free parameters that could be estimated from scarce data.How the behaviour of a population depends on the level of heterogeneity (all other parameters kept equal) – this is the second issue studied in the paper. It turns out that both for the short run and for the long run behaviour there exist threshold values, such that more heterogeneity is advantageous for the population if and only if the initial (weighted) prevalence is above the threshold.This research was partly supported by the Austrian Science Foundation under contract N0. 15618-OEK.  相似文献   

19.
This paper is concerned with a general stochastic model for susceptible→infective→removed epidemics, among a closed finite population, in which during its infectious period a typical infective makes both local and global contacts. Each local contact of a given infective is with an individual chosen independently according to a contact distribution ‘centred’ on that infective, and each global contact is with an individual chosen independently and uniformly from the whole population. The asymptotic situation in which the local contact distribution remains fixed as the population becomes large is considered. The concepts of local infectious clump and local susceptibility set are used to develop a unified approach to the threshold behaviour of this class of epidemic models. In particular, a threshold parameter R* governing whether or not global epidemics can occur, the probability that a global epidemic occurs and the mean proportion of initial susceptibles ultimately infected by a global epidemic are all determined. The theory is specialised to (i) the households model, in which the population is partitioned into households and local contacts are chosen uniformly within an infective’s household; (ii) the overlapping groups model, in which the population is partitioned in several ways, with local uniform mixing within the elements of the partitions; and (iii) the great circle model, in which individuals are equally spaced on a circle and local contacts are nearest-neighbour.  相似文献   

20.
Recent studies have increasingly turned to graph theory to model more realistic contact structures that characterize disease spread. Because of the computational demands of these methods, many researchers have sought to use measures of network structure to modify analytically tractable differential equation models. Several of these studies have focused on the degree distribution of the contact network as the basis for their modifications. We show that although degree distribution is sufficient to predict disease behaviour on very sparse or very dense human contact networks, for intermediate density networks we must include information on clustering and path length to accurately predict disease behaviour. Using these three metrics, we were able to explain more than 98 per cent of the variation in endemic disease levels in our stochastic simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号