首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Membrane guanylate cyclase C (GC-C) is the receptor for guanylin, uroguanylin, and heat-stable enterotoxin (STa) in the intestine. GC-C-deficient mice show resistance to STa in intestine but saluretic and diuretic effects of uroguanylin and STa are not disturbed. Here we describe the cellular effects of these peptides using immortalized human kidney epithelial (IHKE-1) cells with properties of the proximal tubule, analyzed with the slow-whole-cell patch clamp technique. Uroguanylin (10 or 100 nm) either hyperpolarized or depolarized membrane voltages (V(m)). Guanylin and STa (both 10 or 100 nm), as well as 8-Br-cGMP (100 microm), depolarized V(m). All peptide effects were absent in the presence of 1 mm Ba(2+). Uroguanylin and guanylin changed V(m) pH dependently. Pertussis toxin (1 microg/ml, 24 h) inhibited hyperpolarizations caused by uroguanylin. Depolarizations caused by guanylin and uroguanylin were blocked by the tyrosine kinase inhibitor, genistein (10 microm). All three peptides increased cellular cGMP. mRNA for GC-C was detected in IHKE-1 cells and in isolated human proximal tubules. In IHKE-1 cells GC-C was also detected by immunostaining. These findings suggest that GC-C is probably the receptor for guanylin and STa. For uroguanylin two distinct signaling pathways exist in IHKE-1 cells, one involves GC-C and cGMP as second messenger, the other is cGMP-independent and connected to a pertussis toxin-sensitive G protein.  相似文献   

3.
Heat-stable enterotoxin (STa) produced by Escherichia coli induces intestinal secretion in mammals by binding to the brush border membrane of the small intestine and activating guanylyl cyclase. We report here the cloning and expression of a cDNA encoding the human receptor for STa. The receptor contains both an extracellular ligand binding site and a cytoplasmic guanylyl cyclase catalytic domain, making it a member of the same receptor family as the natriuretic peptide receptors. Stable mammalian cell lines over-expressing the STa receptor specifically bind 125I-STa (Kd approximately 1.0 nM) and respond to STa by dramatically increasing (approximately 50-fold) cellular cGMP levels. Sequence comparisons between the human and the rat STa receptors show less conservation in the extracellular domain than similar comparisons of natriuretic peptide receptors. This divergence may indicate important species differences in ligand-receptor interaction.  相似文献   

4.
Heat stable enterotoxins (STs) are low molecular-weight peptides secreted by enterotoxigenic bacteria. One type of these enterotoxins (STa) induces intestinal secretion leading to acute diarrhea by binding to a membrane form of guanylate cyclase. We have isolated a cDNA from a human colonic cell line, T84, encoding for a guanylate cyclase-coupled enterotoxin receptor (STaR). The predicted amino acid sequence of the human STa receptor is 81% identical with the previously cloned enterotoxin receptor (GC-C) from rat intestine. COS-7 cells transiently transfected with the cloned cDNA expressed specific concentration-dependent response to STa as measured by cyclic GMP accumulation and is about 20 times more sensitive to the stimulation by STa than has been shown for GC-C.  相似文献   

5.
Besides being a Ca2-regulating hormone, parathyroid hormone (PTH) has also been shown to regulate epithelial transport of certain ions, such as Cl, HCO?, and Na, particularly in the kidney. Although the intestinal epithelium also expressed PTH receptors, little was known regarding its mechanism in the regulation of intestinal ion transport. We investigated the ion regulatory role of PTH in intestinal epithelium-like Caco-2 monolayer by Ussing chamber technique and alternating current impedance spectroscopy. It was found that Caco-2 cells rapidly responded to PTH within 1 min by increasing apical HCO?- secretion. CFTR served as the principal route for PTH-stimulated apical HCOV efflux, which was abolished by various CFTR inhibitors, namely, NPPB, glycine hydrazide-101 (GlyH-101), and CFTRinh-172, as well as by small interfering RNA against CFTR. Concurrently, the plasma membrane resistance was decreased with no changes in the plasma membrane capacitance or paracellular permeability. HCOV was probably supplied by basolateral uptake via the electrogenic Na?-HCO?? cotransporter and by methazolamide-sensitive carbonic anhydrase, while the resulting intracellular H? might be extruded by both apical and basolateral Na/H exchangers. Furthermore, the PTH-stimulated HCO?-secretion was markedly reduced by protein kinase A (PKA) inhibitor (PKI 14-22 amide) and phosphoinositide 3-kinase (PI3K) inhibitors (wortmannin and LY-294002), but not by intracellular Ca2? chelator (BAPTA-AM) or protein kinase C inhibitor (GF-109203X). In conclusion, the present study provided evidence that PTH directly and rapidly stimulated apical HCO?- secretion through CFTR in PKA- and PI3K-dependent manner, which was a novel noncalciotropic, ion regulatory action of PTH in the intestinal epithelium.  相似文献   

6.
Abstract

Background/Aims: Guanylyl cyclase C (GC-C) is an intestinal transmembrane receptor which binds both guanylin, an endogenous ligand, and Escherichia coli heat-stable enterotoxin (STa) resulting in 5′-cyclic guanosine monophosphate (cGMP) accumulation and chloride secretion. In the adult rat, there is a high basal level of GC-C expression in the intestine, but not in the liver. Increased expression of GC-C in the rat liver has been demonstrated during the perinatal period as well as with liver regeneration and during an acute phase response. The aim of this study was to identify and utilize cell culture models to further characterize the expression of GC-C in the liver. Methods: STa binding, STa-stimulated cGMP accumulation, and GC-C RNA expression by Northern analysis were determined in primary cultures of rat hepatocytes and H-35 cells, a rat hepatoma cell line, following treatment with dexamethasone and/or interleukin-6 (IL-6). Results: In rat hepatocytes treated with the combination of dexamethasone and IL-6, there was an increase in STa binding, STa-stimulated cGMP accumulation, and GC-C RNA expression as compared to untreated cells. In H-35 cells treated with dexamethasone alone, there was an increase in STa binding, STa-stimulated cGMP accumulation, and GC-C RNA expression as compared to untreated cells. Conclusion: Primary cultures of rat hepatocytes and H-35 cells can be utilized to further study upregulation of GC-C in the hepatocyte. The expression of this receptor in hepatocytes, combined with the recent demonstration of circulating guanylin, is consistent with a functional role for GC-C in the liver.  相似文献   

7.
Guanylyl cyclase C (GC-C), the receptor for guanylin, uroguanylin, and the heat-stable enterotoxin, regulates fluid balance in the intestine and extraintestinal tissues. The receptor has an extracellular domain, a single transmembrane spanning domain, and an intracellular domain that harbors a region homologous to protein kinases, followed by the C-terminal guanylyl cyclase domain. Adenine nucleotides can regulate the guanylyl cyclase activity of GC-C by binding to the intracellular kinase homology domain (KHD). In this study, we have tested the effect of several protein kinase inhibitors on GC-C activity and find that the tyrphostins, known to be tyrosine kinase inhibitors, could inhibit GC-C activity in vitro. Tyrphostin A25 (AG82) was the most potent inhibitor with an IC(50) of approximately 15 microM. The mechanism of inhibition was found to be noncompetitive with respect to both the substrate MnGTP and the metal cofactor. Interestingly, the activity of the catalytic domain of GC-C (lacking the KHD) expressed in insect cells was also inhibited by tyrphostin A25 with an IC(50) of approximately 5 microM. As with the full-length receptor, inhibition was found to be noncompetitive with respect to MnGTP. Inhibition was reversible, ruling out a covalent modification of the receptor. Structurally similar proteins such as the soluble guanylyl cyclase and the adenylyl cyclases were also inhibited by tyrphostin A25. Evaluation of a number of tyrphostins allowed us to identify the requirement of two vicinal hydroxyl groups in the tyrphostin for effective inhibition of cyclase activity. Therefore, our studies are the first to report that nucleotide cyclases are inhibited by tyrphostins and suggest that novel inhibitors based on the tyrphostin scaffold can be developed, which could aid in a greater understanding of nucleotide cyclase structure and function.  相似文献   

8.
We studied the functional importance of the colonic guanylyl cyclase C (GCC) receptor in GCC receptor-deficient mice. Mice were anesthetized with pentobarbital sodium, and colon segments were studied in Ussing chambers in HCO3- Ringer under short-circuit conditions. Receptor-deficient mouse proximal colon exhibited similar net Na+ absorption, lower net Cl- absorption, and a negative residual ion flux (J(R)), indicating net HCO3- absorption compared with that in normal mice. In normal mouse proximal colon, mucosal addition of 50 nM Escherichia coli heat-stable enterotoxin (STa) increased the serosal-to-mucosal flux of Cl- (J(s-->m)(Cl)) and decreased net Cl- flux (J(net)(Cl)) accompanied by increases in short-circuit current (I(sc)), potential difference (PD), and tissue conductance (G). Serosal STa had no effect. In distal colon neither mucosal nor serosal STa affected ion transport. In receptor-deficient mice, neither mucosal nor serosal 500 nM STa affected electrolyte transport in proximal or distal colon. In these mice, 1 mM 8-bromo-cGMP produced changes in proximal colon J(s-->m)(Cl) and J(net)(Cl), I(sc), PD, G, and J(R) similar to mucosal STa addition in normal mice. We conclude that the GCC receptor is necessary in the mouse proximal colon for a secretory response to mucosal STa.  相似文献   

9.
1.--Electron micrographs of rat jejunum mucosa incubated for 1 h in the presence of Escheria coli heat-stable enterotoxin (STa) in the lumen shows alterations of villous cells as well as of crypt cells. The brush border of mature enterocytes is partially desintegrated and covered with a thick mucus. Crypts are occupied on half of their height by cells very similar to Paneth cells, loaded with numerous large dark inclusions. 2.--Cell volume and intracellular inorganic ion concentrations have been estimated in mucosal scrapings of jejunum sacs, incubated in vitro for 1 or 3 h. The quick action (1 h of incubation) of STa is a swelling of the intestinal calls accompanied by an increase in Na+, Cl- and Ca2+ intracellular concentrations and a decrease in the K+ and Mg2+ ones. The delayed action (3 h of incubation) is an increase of extracellular space and a decrease in cell volume; and at the same time the intracellular concentration of Na+, Cl-, K+, Ca2+ and Mg2+ is augmented. 3.--After 3 h of incubation intestinal cells from the other levels of intestine (duodenum, ileum and colon) show the same variations in cell volume and intracellular inorganic ion concentrations under the influence of STa, as those recorded in the jejunum. 4.--The present work favours the hypothesis that all intestinal cells, villous or cryptic, are involved in the alteration of fluid ion transport ending in diarrhea.  相似文献   

10.
We used the whole-cell patch-clamp technique to study membrane currents in human airway epithelial cells. The conductive properties, as described by the instantaneous current-voltage relationship, rectified in the outward direction when bathed in symmetrical CsCl solutions. In the presence of Cl concentration gradients, currents reversed near ECl and were not altered significantly by cations. Agents that inhibit the apical membrane Cl conductance inhibited Cl currents. These conductive properties are similar to the conductive properties of the apical membrane Cl channel studied with the single-channel patch-clamp technique. The results suggest that the outwardly rectifying Cl channel is the predominant Cl-conductive pathway in the cell membrane. The steady-state and non-steady-state kinetics indicate that current flows through ion channels that are open at hyperpolarizing voltages and close with depolarization. These Cl currents were regulated by the cAMP-dependent protein kinase: when the catalytic subunit of cAMP-dependent protein kinase was included in the pipette solution, Cl channel current more than doubled. We also found that reducing extracellular osmolarity by 30% increased Cl current, suggesting that cell-swelling stimulated Cl current. Studies of transepithelial Cl transport in cell monolayers suggest that a reduction in solution osmolarity activates the apical Cl channel: reducing extracellular osmolarity stimulated a short-circuit current that was inhibited by Cl-free solution, by mucosal addition of a Cl channel antagonist, and by submucosal addition of a loop diuretic. These results suggest that apical membrane Cl channels may be regulated by cell volume and by the cAMP-dependent protein kinase.  相似文献   

11.
Receptor guanylyl cyclases possess an extracellular ligand-binding domain, a single transmembrane region, a region with sequence similar to that of protein kinases, and a C-terminal guanylyl cyclase domain. ATP regulates the activity of guanylyl cyclase C (GC-C), the receptor for the guanylin and stable toxin family of peptides, presumably as a result of binding to the kinase homology domain (KHD). Modeling of the KHD of GC-C indicated that it could adopt a structure similar to that of tyrosine kinases, and sequence comparison with other protein kinases suggested that lysine(516) was positioned in the KHD to interact with ATP. A monoclonal antibody GCC:4D7, raised to the KHD of GC-C, did not recognize ATP-bound GC-C, and its epitope mapped to a region in the KHD of residues 491--568 of GC-C. Mutation of lysine(516) to an alanine in full-length GC-C (GC-C(K516A)) dramatically reduced the ligand-stimulated activity of mutant GC-C, altered the ATP-mediated effects observed with wild-type GC-C, and failed to react with the GCC:4D7 monoclonal antibody. ATP interaction with wild-type GC-C converted a high-molecular weight oligomer of GC-C to a smaller sized oligomer. In contrast, GC-C(K516A) did not exhibit an alteration in its oligomeric status on incubation with ATP. We therefore suggest that the KHD in receptor guanylyl cyclases provides a critical structural link between the extracellular domain and the catalytic domain in regulation of activity in this family of receptors, and the presence of K(516) is critical for the possible proper orientation of ATP in this domain.  相似文献   

12.
Human magnesium homeostasis primarily depends on the balance between intestinal absorption and renal excretion. Magnesium transport processes in both organ systems – next to passive paracellular magnesium flux – involve active transcellular magnesium transport consisting of an apical uptake into the epithelial cell and a basolateral extrusion into the interstitium. Whereas the mechanism of basolateral magnesium extrusion remains unknown, recent molecular genetic studies in patients with hereditary hypomagnesemia helped gain insight into the molecular nature of apical magnesium entry into intestinal brush border and renal tubular epithelial cells. Patients with Hypomagnesemia with Secondary Hypocalcemia (HSH), a primary defect in intestinal magnesium absorption, were found to carry mutations in TRPM6, a member of the melastatin-related subfamily of transient receptor potential (TRP) ion channels. Before, a close homologue of TRPM6, TRPM7, had been characterized as a magnesium and calcium permeable ion channel vital for cellular magnesium homeostasis. Both proteins share the unique feature of an ion channel fused to a kinase domain with homology to the family of atypical alpha kinases. The aim of this review is to summarize the data emerging from clinical and molecular genetic studies as well as from electrophysiologic and biochemical studies on these fascinating two new proteins and their role in human magnesium metabolism.  相似文献   

13.
TRPM6 and TRPM7--Gatekeepers of human magnesium metabolism   总被引:5,自引:0,他引:5  
Human magnesium homeostasis primarily depends on the balance between intestinal absorption and renal excretion. Magnesium transport processes in both organ systems - next to passive paracellular magnesium flux - involve active transcellular magnesium transport consisting of an apical uptake into the epithelial cell and a basolateral extrusion into the interstitium. Whereas the mechanism of basolateral magnesium extrusion remains unknown, recent molecular genetic studies in patients with hereditary hypomagnesemia helped gain insight into the molecular nature of apical magnesium entry into intestinal brush border and renal tubular epithelial cells. Patients with Hypomagnesemia with Secondary Hypocalcemia (HSH), a primary defect in intestinal magnesium absorption, were found to carry mutations in TRPM6, a member of the melastatin-related subfamily of transient receptor potential (TRP) ion channels. Before, a close homologue of TRPM6, TRPM7, had been characterized as a magnesium and calcium permeable ion channel vital for cellular magnesium homeostasis. Both proteins share the unique feature of an ion channel fused to a kinase domain with homology to the family of atypical alpha kinases. The aim of this review is to summarize the data emerging from clinical and molecular genetic studies as well as from electrophysiologic and biochemical studies on these fascinating two new proteins and their role in human magnesium metabolism.  相似文献   

14.
The control of fluid and electrolyte homeostasis in vertebrates requires the integration of a diverse set of signaling inputs, which control epithelial Na(+) transport, the principal ionic component of extracellular fluid. The key site of regulation is a segment of the kidney tubules, frequently termed the aldosterone-sensitive distal nephron, wherein the epithelial Na(+) channel (or ENaC) mediates apical ion entry. Na(+) transport in this segment is strongly regulated by the salt-retaining hormone, aldosterone, which acts through the mineralocorticoid receptor (MR) to influence the expression of a selected set of target genes, most notably the serine-threonine kinase SGK1, which phosphorylates and inhibits the E3 ubiquitin ligase Nedd4-2. It has long been known that ENaC activity is tightly regulated in vertebrate epithelia. Recent evidence suggests that SGK1 and Nedd4-2, along with other ENaC-regulatory proteins, physically associate with each other and with ENaC in a multi-protein complex. The various components of the complex are regulated by diverse signaling networks, including steroid receptor-, PI3-kinase-, mTOR-, and Raf-MEK-ERK-dependent pathways. In this review, we focus on the organization of the targets of these pathways by multi-domain scaffold proteins and lipid platforms into a unified complex, thereby providing a molecular basis for signal integration in the control of ENaC.  相似文献   

15.
Fibrates are peroxisome proliferator-activated receptor-alpha (PPARalpha) ligands in widespread clinical use to lower plasma triglyceride levels. We investigated the effect of fenofibrate and clofibrate on ion transport in mouse intestine and in human T84 colonic adenocarcinoma cells through the use of short-circuit current (I(sc)) and ion flux analysis. In mice, oral administration of fenofibrate produced a persistent inhibition of cAMP-stimulated electrogenic Cl(-) secretion by isolated jejunum and colon without affecting electroneutral fluxes of (22)Na(+) or (86)Rb(+) (K(+)) across unstimulated colonic mucosa. When applied acutely to isolated mouse intestinal mucosa, 100 microM fenofibrate inhibited cAMP-stimulated I(sc) within 5 min. In T84 cells, fenofibrate rapidly inhibited approximately 80% the Cl(-) secretory responses to forskolin (cAMP) and to heat stable enterotoxin STa (cGMP) without affecting the response to carbachol (Ca(2+)). Both fenofibrate and clofibrate inhibited cAMP-stimulated I(sc) with an IC(50) approximately 1 muM, whereas other PPARalpha activators (gemfibrozil and Wy-14,643) were without effect. Membrane permeabilization experiments on T84 cells indicated that fenofibrate inhibits basolateral cAMP-stimulated K(+) channels (putatively KCNQ1/KCNE3) without affecting Ca(2+)-stimulated K(+) channel activity, whereas clofibrate inhibits both K(+) pathways. Fenofibrate had no effect on apical cAMP-stimulated Cl(-) channel activity. Patch-clamp analysis of HEK-293T cells confirmed that 100 microM fenofibrate rapidly inhibits K(+) currents associated with ectopic expression of human KCNQ1 with or without the KCNE3 beta-subunit. We conclude that fenofibrate inhibits intestinal cAMP-stimulated Cl(-) secretion through a nongenomic mechanism that involves a selective inhibition of basolateral KCNQ1/KCNE3 channel complexes. Our findings raise the prospect of fenofibrate as a safe and effective antidiarrheal agent.  相似文献   

16.
The role of the kinase homology domain (KHD) in receptor guanylyl cyclases is to regulate the activity of the catalytic guanylyl cyclase domain. The KHD lacks many of the amino acids required for phosphotransfer activity and, therefore, is not expected to possess kinase activity. Guanylyl cyclase activity of the receptor guanylyl cyclase C (GC-C) is modulated by ATP, and computational modeling showed that the KHD can adopt a structure similar to protein kinases, suggesting that the KHD is the site for ATP interaction. A monoclonal antibody, GCC:4D7, raised to the KHD of GC-C, fails to react with GC-C in the presence of ATP and ATP analogues that regulate GC-C catalytic activity, indicating that a conformational change occurs in the KHD on ATP binding. Mapping of the epitope of the antibody through the use of recombinant protein constructs and phage display showed that the epitope for GC-C:4D7 lies immediately C-terminal to a critical lysine residue (Lys516 in GC-C), required for ATP interaction in protein kinases. By employing a novel approach utilizing ATP-agarose affinity chromatography, we demonstrate that the intracellular domain of GC-C and the KHD bind ATP. Mutation of Lys516 to Ala abolishes ATP binding. Thus, this report is the first to show direct ATP binding to the pseudokinase domain of receptor guanylyl cyclase C, as well as to identify dramatic conformational changes that occur in this domain on ATP binding, akin to those seen in catalytically active protein kinases.  相似文献   

17.
A review of the evidence for Escherichia coli STa causing fluid secretion in vito leads to the conclusion that the concept of STa acting through enhanced chloride secretion in order to derange intestinal function is unproven. However, a consistent effect of STa in the small intestine is on Na+/H+ exchange, leading to interruption of luminal acidification. A model for the action of STa, involving inhibition of Na+/H+ exchange, is proposed which explains the ability of STa to reduce absorption in vito but its inability to cause secretion in vito in contrast to its apparent secretory effect in vitro. The apparent ability to demonstrate secretion in vitro is shown to derive from methodologies which do not involve measurement of mass transport of water but instead, infer it from in vitro and in vivo proxy measurements. The in vitro demonstration of notional secretion after STa exposure can be reconciled with the proposed new model for fluid absorption in that cell swelling is argued to arise as a transient consequence of STa challenge followed by regulatory volume decrease. Evidence for this derangement model is presented in the form of observations derived from acute in vivo physiological studies and clinical studies on patients without the exchanger. This process of appraisal of the evidence for the mechanism of action of STa has led to a new model for fluid absorption. This is based on the formation of hypotonicity at the brush border luminal surface rather than hypertonicity within the lateral spaces as required by the present standing gradient model of fluid absorption. Evidence from the literature is presented for this new paradigm of water absorption, which may only be relevant for small intestine and other tissues that have Na+/H+ exchangers in contact with HCO-3-containing solutions but which may also be generalizable to all mammalian absorbing epithelial membranes.  相似文献   

18.
The heat-stable enterotoxin STa of E. coli causes diarrhea by binding to and stimulating intestinal membrane-bound guanylyl cyclase, triggering production of cyclic GMP. Agents which stimulate protein kinase C (PKC), including phorbol esters, synergistically enhance STa effects on cGMP and secretion. We investigated whether PKC causes phosphorylation of the STa receptor in vivo and in vitro.Immunoprecipitation of the STa receptor-guanylyl cyclase was carried out from extracts of T84 colon cells metabolically labelled with [32P]-phosphate using polyclonal anti-STa receptor antibody. The STa receptor was phosphorylated in its basal state, and 32P content in the 150 kDa holoreceptor band increased 2-fold in cells exposed to phorbol ester for 1 h. In vitro, immunopurified STa receptor was readily phosphorylated by purified rat brain PKC. Phosphorylation was inhibited 40% by 5 M of a synthetic peptide corresponding to the sequence around Ser1029 of the STa receptor, a site previously proposed as a potential PKC phosphorylation site. Treatment of the immunopurified STaR/GC with purified PKC increased STa-stimulated guanylyl cyclase activity 2-fold. We conclude that PKC phosphorylates and activates the STa receptor/guanylyl cyclase in vitro and in vivo; Ser1029 of the STaR/GC remains a candidate phosphorylation site by PKC.Abbreviations STa the heat-stable enterotoxin of E. coli, which has also been called ST-I and STp. The 18 amino acid variant was used throughout - PBS phosphate-buffered saline - PDB 4--12, 13-phorbol dibutyrate - ANP atrial natriuretic peptide - STaR/GC STa receptor/guanylyl cyclase, also called GC-C - PKC protein kinase C  相似文献   

19.
An electrokinetic model was developed to calculate the time course of electrical parameters, ion fluxes, and intracellular ion activities for experiments performed in airway epithelial cells. Model variables included cell [Na], [K], [Cl], volume, and membrane potentials. The model contained apical membrane Cl, Na, and K conductances, basolateral membrane K conductance, Na/K/2 Cl and Na/Cl symport, and 3 Na/2 K ATPase, and a paracellular conductance. Transporter permeabilities and ion saturabilities were determined from reported ion flux data and membrane potentials in intact canine trachea. Without additional assumptions, the model predicted accurately the measured short-circuit current (Isc), cellular conductances, voltage-divider ratios, open-circuit potentials, and the time course of cell ion composition in ion substitution experiments. The model was used to examine quantitatively: (a) the effect of transport inhibitors on Isc and membrane potentials, (b) the dual role of apical Cl and basolateral K conductance in cell secretion, (c) whether the basolateral symporter requires K, and (d) the regulation of apical Cl conductance by cAMP and Ca-dependent signaling pathways. Model predictions gave improved understanding of the interrelations among transporting systems and in many cases gave surprising predictions that were not obvious without a detailed model. The model developed here has direct application to secretory or absorptive epithelial cells in the kidney thick ascending limb, cornea, sweat duct, and intestine in normal and pathophysiological states such as cystic fibrosis and cholera.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号