首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
After mating, inseminated spermatozoa are transported to the oviduct. They attach to and interact with oviductal epithelial cells (OEC). To investigate sperm-OEC interactions, we used chlortetracycline to study the capacitation status of boar spermatozoa in coculture with homologous OEC and cells of nonreproductive origin (LLC-PK1, porcine kidney epithelial cell line). Boar spermatozoa were cocultured with OEC and LLC-PK1 cells for 15, 60, 120, or 240 min. The proportion of capacitated spermatozoa in coculture with the isthmic and ampullar cells increased significantly (p < 0.05) during incubation. However, most spermatozoa in coculture with LLC-PK1 cells or blank (medium only) remained uncapacitated. In addition, preferential binding of uncapacitated, capacitated, or acrosome-reacted boar spermatozoa to OEC and the other cell type was investigated. Our approach was to vary the proportions of uncapacitated, capacitated, or acrosome-reacted boar spermatozoa in suspension using long preincubation and lysophosphatidylcholine treatment of semen prior to a very short incubation with OEC or LLC-PK1 cells. The results showed that the majority of spermatozoa that were bound to OEC or LLC-PK1 cells were uncapacitated and that a significant relationship existed between the relative proportion of uncapacitated spermatozoa in the control samples and those bound to LLC-PK1 cells (r2 = 0.43, p < 0.005). However, there was no correlation between the proportion of uncapacitated spermatozoa in the control samples and the proportion of those bound to isthmic or ampullar cells. In conclusion, the results clearly demonstrated the specific nature of the sperm-OEC interaction in the porcine species. This interaction is initiated by uncapacitated spermatozoa binding to OEC and is continued by the induction of capacitation in cocultured spermatozoa.  相似文献   

3.
Implementation of the swine umbilical vein endothelial cells (SUVECs) model in vitro can be instrumental in determining the biology of endothelial cells. We have generated an immortalized endothelial cell line, G-1410, using Simian virus 40 T-antigen (SV40 T-ag) primarily to overcome the short life span before the onset of senescence and high variability among enzymatically isolated cells of primary cultures. Fast proliferating cells were selected from cultures and, after a fifth passage, examined for the presence of the SV40 T-ag by PCR and immunocytochemistry. Phase contrast and transmission electron microscopy revealed that G-1410 cells did not differ morphologically from SUVECs. The G-1410 cells exhibited positive staining for vascular endothelial (VE)-cadherin and von Willebrand factor (vWF), and formed capillary-like tube structures on Matrigel. Despite the strong oncogenic signal provided by SV40 T-ag, these transformed G-1410 cells have remained karyotypically normal and non-tumorigenic. G-1410 cells also responded to stimulation with VEGF, FGF-2, and newborn calf serum. Moreover, G-1410 cells showed elevated expression of VEGF120, VEGF164 (VEGF-A), and FGF-2 at both mRNA and protein levels. In conclusion, based on the cytological and functional evaluation of the newly obtained immortalized cell line, it can be concluded that G-1410 cells provide a useful tool for studying the effects of VEGF and FGF systems, and other signal transduction pathways related to angiogenesis.  相似文献   

4.
The effects of different epithelial cells, namely, hamster oviduct, sheep oviduct, and pig kidney epithelial cells (IBRS-2), on the viability, percentage of progressive motility (PPM), and acrosome reactions of ejaculated ram spermatozoa were investigated. Sperm aliquots were cultured on cells, cell-conditioned medium 199, or control medium 199. The PPM of unattached spermatozoa was estimated after 0, 3, 6, 9, 12, and 24 hr of incubation at 37°C under 5% CO2 in air. Viability and the occurrence of true acrosome reactions were assessed using a triple-stain technique. Spermatozoa started to attach within 1 hr of coculture with the hamster or sheep oviductal epithelial cell (OEC) monolayers, and these spermatozoa showed vigorous tail motion. No spermatozoa were found to attach to the IBRS-2 monolayer. The PPM of unattached spermatozoa cocultured with the various types of epithelial cell monolayers for 12 hr was significantly higher than that of spermatozoa incubated in conditioned media or medium 199 alone (54% in hamster OEC vs. 40% in conditioned; 68% in sheep OEC vs. 38% in conditioned; 36% in control medium). On the other hand, after 24 hr of incubation, there were no differences in the PPM of spermatozoa cocultured with epithelial cells or incubated in conditioned media. The percentages of cells undergoing a true acrosome reaction reached maximum values (P < 0.05) in spermatozoa incubated for 9 hr in the presence of hamster OEC (22.5%) or for 12 hr on sheep OEC (20.5%) monolayers. IBRS-2, a commercial nonreproductive cell type, had a positive influence on both PPM and sperm viability but no effect on the occurrence of the acrosome reaction. Interactions leading to the acrosome reaction were thus observed only when spermatozoa were cocultured with OEC monolayers. The values of PPM in unattached sperm cells seen after 12 hr of coculture with OEC or IBRS-2 were still at a high level (52–67%) for in vitro fertilization. The coculture with OECs provides an “in vitro” model to study the capacitation processes in a situation that may resemble that occurring in vivo. Moreover, the coculture with hamster OECs may provide a convenient and standardized in vitro system to study mechanisms underlying capacitation and the acrosome reaction. © 1993 Wiley-Liss, Inc.  相似文献   

5.
6.
The periacrosomal plasma membrane of spermatozoa is involved in sperm binding to oviductal epithelial cells and to the zona pellucida. A protein of 68–70 kD molecular mass was purified biochemically from the isolated periacrosomal plasma membrane of equine spermatozoa as a possible receptor for adhesion of spermatozoa to oviductal epithelial cells. A polyclonal antibody raised in rabbits against the purified equine sperm membrane protein recognized the 70 kD and an antigenically related 32 kD protein in preparations of isolated periacrosomal sperm plasma membrane and in detergent extracted ejaculated and epididymal spermatozoa. A larger protein (∼110 kD) was detected in equine testis. Two antigenically related proteins (64 and 45 kD) were recognized on the plasma membrane of cynomolgus macaque spermatozoa. In vitro sperm-binding assays were performed in the presence of antigen-binding fragments or IgG purified from the polyclonal antiserum to investigate a possible function of the isolated protein in binding of equine spermatozoa to homologous oviductal epithelial cells or zona pellucida. Incubation with antigen-binding fragments or IgG purified from the antiserum did not inhibit binding of equine spermatozoa either to oviductal epithelial cells or to the zona pellucida. On ultrastructural examination, the antibody bound exclusively to the cytoplasmic side of the periacrosomal plasma membrane of equine and macaque spermatozoa. Microsequence analysis of 13 residues of sequence showed strong homology with a number of angiotensin converting enzymes: An 84% identity was identified with testis specific and somatic forms of human and mouse angiotensin-converting enzyme. Immunocytochemistry and immunoblot analysis established that the protein is specific for the periacrosomal membrane of ejaculated, epididymal, and testicular stallion spermatozoa. Mol. Reprod. Dev. 48:251–260, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Human Hertwig’s epithelial root sheath/epithelial rests of Malassez (HERS/ERM) cells are epithelial remnants of teeth residing in the periodontium. Although the functional roles of HERS/ERM cells have yet to be elucidated, they are a unique epithelial cell population in adult teeth and are reported to have stem cell characteristics. Therefore, HERS/ERM cells might play a role as an epithelial component for the repair or regeneration of dental hard tissues; however, they are very rare population in periodontium and the primary isolation of them is considered to be difficult. To overcome these problems, we immortalized primary HERS/ERM cells isolated from human periodontium using SV40 large T antigen (SV40 LT) and performed a characterization of the immortalized cell line. Primary HERS/ERM cells could not be maintained for more than 6 passages; however, immortalized HERS/ERM cells were maintained for more than 20 passages. There were no differences in the morphological and immunophenotypic characteristics of HERS/ERM cells and immortalized HERS/ERM cells. The expression of epithelial stem cell and embryonic stem cell markers was maintained in immortalized HERS/ERM cells. Moreover, immortalized HERS/ERM cells could acquire mesenchymal phenotypes through the epithelial-mesenchymal transition via TGF-β1. In conclusion, we established an immortalized human HERS/ERM cell line with SV40 LT and expect this cell line to contribute to the understanding of the functional roles of HERS/ERM cells and the tissue engineering of teeth.  相似文献   

8.
The aim of the present study was to compare the influence of cultured epididymal epithelial cells (EEC) from corpus, caput or cauda, oviductal epithelial cells (OEC) and non-reproductive epithelial cells (LLC-PK1) on function and survival of epididymal and ejaculated spermatozoa, in the latter case to determine whether such influence differed between morphologically normal and abnormal spermatozoa. For this purpose, either spermatozoa were directly co-cultured with EEC from caput, corpus, or cauda, OEC and LLC-PK1 cells (experiment 1) or a membrane-diffusible insert was included in these co-cultures (experiment 2). EEC cultured from the three epididymal regions did not differently affect the sperm parameters. Morphologically normal spermatozoa presented a higher ability to bind EEC, OEC, and LLC-PK1 than abnormal spermatozoa with cytoplasmic droplets or with tail/head malformations. Epididymal spermatozoa were more able to bind EEC during the first 24 h of co-culture, while ejaculated spermatozoa presented a higher capacity to bind OEC between 30 min and 3 h of co-incubation. In all cases, the ability to bind to epithelial cells was higher when they were co-cultured with EEC and OEC than with LLC-PK1. After 2 h of co-culture, the viability of epididymal spermatozoa was better maintained when they bound EEC than when they bound OEC. Conversely, the viability of ejaculated spermatozoa was better maintained when bound OEC than when bound EEC after 24 and 48 h of co-culture. Our work, apart from corroborating the involvement of morphologically normal spermatozoa in the formation of sperm reservoir, highlights the importance of direct contact spermatozoa-EEC in maintaining the sperm survival in in vitro co-culture, and also suggests that a specific binding between EEC and epididymal spermatozoa exists.  相似文献   

9.
The transforming potential and oncogenicity of a simian virus 40 (SV40) mutant affecting T-antigen (T-ag), SV40(cT)-3, was examined in an effort to dissect T-ag functions in transformation. SV40(cT)-3 has a point mutation at nucleotide 4434 that abolishes the transport of T-ag to the nucleus but does not affect its association with the cell surface. Transfection-transformation assays were performed with primary cells and established cell lines of mouse and rat origin. The efficiency of transformation for established cell lines by SV40(cT)-3 was comparable to that of wild-type SV40, indicating that transformation of established cell lines can occur in the absence of detectable amounts of nuclear T-ag. Transformation of primary mouse embryo fibroblasts by SV40(cT)-3 was markedly influenced by culture conditions; the relative transforming frequency was dramatically reduced in assays involving focus formation in low serum concentrations or anchorage-independent growth. Immunofluorescence tests revealed that the transformed mouse embryo fibroblasts partially transport the mutant cT-ag to the cell nucleus. Transformed cell lines induced by SV40(cT)-3 did not differ in growth properties from wild-type transformants. SV40(cT)-3 was completely defective for the transformation of primary baby rat kidney cells, a primary cell type unable to transport the mutant T-ag to the nucleus. The intracellular localization of cellular protein p53 was found to mimic T-ag distribution in all the transformants analyzed. The mutant virus was weakly oncogenic in vivo: the induction of tumors in newborn hamsters by SV40(cT)-3 was reduced in incidence and delayed in appearance in comparison to wild-type SV40. These observations suggest that cellular transformation is regulated by both nuclear and surface-associated forms of SV40 T-ag.  相似文献   

10.
trans-activation of viral enhancers by the hepatitis B virus X protein.   总被引:53,自引:25,他引:28  
  相似文献   

11.
The antigenic structure of simian virus 40 (SV40) large tumor antigen (T-ag) in the plasma membranes of SV40-transformed mouse cells and SV40-infected monkey cells was characterized as a step toward defining possible biological function(s). Wild-type SV40, as well as a deletion mutant of SV40 (dl1263) which codes for a truncated T-ag with an altered carboxy terminus, was used to infect permissive cells. Members of a series of monoclonal antibodies directed against antigenic determinants on either the amino or the carboxy terminus of the T-ag polypeptide were able to precipitate surface T-ag (as well as nuclear T-ag) from both SV40-transformed and SV40-infected cells. Cellular protein p53 was coprecipitated with T-ag by all T-ag-reactive reagents from the surface and nucleus of SV40-transformed cells. In contrast, T-ag, but not T-ag-p53 complex, was recovered from the surface of SV40-infected cells. These results confirm that nuclear T-ag and surface T-ag are highly related molecules and that a complex of SV40 T-ag and p53 is present at the surface of SV40-transformed cells. Detectable levels of such a complex do not appear to be present on SV40-infected cells. Both the carboxy and amino termini of T-ag are exposed on the surfaces of SV40-transformed and -infected cells. The possible relevance of the presence of a T-ag-p53 complex on the surface of SV40-transformed cells and its absence from SV40-infected cells is considered.  相似文献   

12.
Human oviductal cells stimulate embryo development in vitro partly by the production of embryotrophic glycoproteins. The identity of these glycoproteins is not yet known mainly because oviductal samples are limited and that the cultured parental oviductal cells cannot produce sufficient amount of embryotrophic factors for characterization. In this study, human oviductal epithelial cells (OE) were immortalized by HPV 16 E6/E7 open reading frame (ORF) by retroviral expression. The characteristics of this immortalized cell line (OE-E6/E7) were compared to the parental OE. HPV 16 E6/E7 DNA was found only in OE-E6/E7 but not in OE. Human oviduct-specific glycoprotein, estrogen receptors, and cytokeratin were found in both cell types. Both OE and OE-E6/E7 possessed telomerase activities but the former had much lower activity. OE-E6/E7 also produced glycoproteins with chromatographic behavior similar to the embryotrophic glycoproteins derived from OE. These results showed that OE-E6/E7 retained a number of characteristics of OE. The development of preimplantation mouse embryo was significantly better after coculture with OE-E6/E7 when compared to medium alone culture in term of blastulation rates (52% vs. 32%) and blastocyst diameter (113.0 +/- 2.07 microm vs. 83.9 +/- 5.23 microm). This immortalized cell line can be used as a continuous and stable in vitro system for the study of the oviductal embryotrophic activity. Mol. Reprod. Dev. 59: 400-409, 2001.  相似文献   

13.
Ball BA  Miller PG 《Theriogenology》1992,37(5):979-991
In this study we examined the ability of equine oviductal epithelial cells (OEC) to support the development of four- to eight-cell equine embryos in vitro and investigated the ability of co-cultured embryos to continue normal development after transfer to synchronous recipient mares. Equine embryos obtained at Day 2 after ovulation were cultured with or without OEC for 5 days. Those OEC co-cultured embryos that reached the blastocyst stage and embryos recovered from the uterus at Day 7 were surgically transferred to synchronous recipient mares. Co-culture with OEC improved (P < 0.01) development of four- to eight-cell embryos to blastocysts compared to medium alone (11/15 vs 0/6) during 5 days in vitro. Embryos co-cultured with OEC were smaller (P < 0.05) and more delayed in development than Day-7 uterine blastocysts. There was no difference in the Day-30 survival rate of co-cultured blastocysts (3/8) or Day-7 uterine blastocysts (5/8) after transfer to recipient mares. These results indicate that co-culture with OEC can support development of four- to eight-cell equine embryos in vitro and that co-cultured embryos can continue normal development after transfer to recipient mares.  相似文献   

14.

Background

Oviduct epithelial cells (OEC) co-culture promotes in vitro fertilization (IVF) in human, bovine and porcine species, but no data are available from equine species. Yet, despite numerous attempts, equine IVF rates remain low. Our first aim was to verify a beneficial effect of the OEC on equine IVF. In mammals, oviductal proteins have been shown to interact with gametes and play a role in fertilization. Thus, our second aim was to identify the proteins involved in fertilization in the horse.

Methods & results

In the first experiment, we co-incubated fresh equine spermatozoa treated with calcium ionophore and in vitro matured equine oocytes with or without porcine OEC. We showed that the presence of OEC increases the IVF rates. In the subsequent experiments, we co-incubated equine gametes with OEC and we showed that the IVF rates were not significantly different between 1) gametes co-incubated with equine vs porcine OEC, 2) intact cumulus-oocyte complexes vs denuded oocytes, 3) OEC previously stimulated with human Chorionic Gonadotropin, Luteinizing Hormone and/or oestradiol vs non stimulated OEC, 4) in vivo vs in vitro matured oocytes. In order to identify the proteins responsible for the positive effect of OEC, we first searched for the presence of the genes encoding oviductin, osteopontin and atrial natriuretic peptide A (ANP A) in the equine genome. We showed that the genes coding for osteopontin and ANP A are present. But the one for oviductin either has become a pseudogene during evolution of horse genome or has been not well annotated in horse genome sequence. We then showed that osteopontin and ANP A proteins are present in the equine oviduct using a surface plasmon resonance biosensor, and we analyzed their expression during oestrus cycle by Western blot. Finally, we co-incubated equine gametes with or without purified osteopontin or synthesized ANP A. No significant effect of osteopontin or ANP A was observed, though osteopontin slightly increased the IVF rates.

Conclusion

Our study shows a beneficial effect of homologous and heterologous oviduct cells on equine IVF rates, though the rates remain low. Furthers studies are necessary to identify the proteins involved. We showed that the surface plasmon resonance technique is efficient and powerful to analyze molecular interactions during fertilization.  相似文献   

15.
Unlike most proteins, which are localized within a single subcellular compartment in the eucaryotic cell, the simian virus 40 (SV40) large tumor antigen (T-ag) is associated with both the nucleus and the plasma membrane. Current knowledge of protein processing would predict a role for the secretory pathway in the biosynthesis and transport of at least a subpopulation of T-ag to account for certain of its chemical modifications and for its ability to reach the cell surface. We have examined this prediction by using in vitro translation and translocation experiments. Preliminary experiments established that translation of T-ag was detectable with as little as 0.1 microgram of the total cytoplasmic RNA from SV40-infected cells. Therefore, by using a 100-fold excess of this RNA, the sensitivity of the assays was above the limits necessary to detect the theoretical fraction of RNA equivalent to the subpopulation of plasma-membrane-associated T-ag (2 to 5% of total T-ag). In contrast to a control rotavirus glycoprotein, the electrophoretic mobility of T-ag was not changed by the addition of microsomal vesicles to the in vitro translation mixture. Furthermore, T-ag did not undergo translocation in the presence of microsomal vesicles, as evidenced by its sensitivity to trypsin treatment and its absence in the purified vesicles. Identical results were obtained with either cytoplasmic RNA from SV40-infected cells or SV40 early RNA transcribed in vitro from a recombinant plasmid containing the SP6 promoter. SV40 early mRNA in infected cells was detected in association with free, but not with membrane-bound, polyribosomes. Finally, monensin, an inhibitor of Golgi function, failed to specifically prevent either glycosylation or cell surface expression of T-ag, although it did depress overall protein synthesis in TC-7 cells. We conclude from these observations that the constituent organelles of the secretory pathway are not involved in the biosynthesis, modification, or intracellular transport of T-ag. The initial step in the pathway of T-ag biosynthesis appears to be translation on free cytoplasmic polyribosomes. With the exclusion of the secretory pathway, we suggest that T-ag glycosylation, palmitylation, and transport to the plasma membrane are accomplished by previously unrecognized cellular mechanisms.  相似文献   

16.
Summary A pSV3neo-transfected rat ovarian cell line (SV-GC) was developed from a primary granulosa culture (GC) to study gap junctional intercellular communication (GJIC) during Simian virus 40 (SV40) transformation. SV-GC expressed SV40 large T-antigen (T-ag), grew indefinitely in culture without luteinization, was anchorage independent, and formed tumors in nude mice. Ultrastructural analysis identified abundant gap junctional membrane and suggested that SV-GC was arrested at an early stage of differentiation. Functional GJIC, measured by a dye transfer technique (gap FRAP), was comparable to that observed in normal granulosa cells, suggesting that the expression of T-ag alone was insufficient to reduce GJIC. However, there was approximately a 50% loss in the rate of GJIC in the nude mouse SV-GC-tumor derived and G418 selected cell line (T-SV-GC). SV-GC→T-SV-GC also resulted in a transition from migration of cells as an epithelial sheet to the dissociation of individual fibroblastoid cells. Tumor cell detachment was also seen in migrating malignant human (A2780 and 547) and rat (DC3) ovarian cell lines. Co-culture combinations of normal (GC)→transformed (SV-GC) → tumor-derived (T-SV-GC) cells indicated that the rate of heterologous GJIC was characteristic of the least communicating partner. Taken together, these data suggested that SV-GC → T-SV-GC represented progression toward metastasis with concomitant reduction of GJIC and adhesiveness. These sequentially derived cell lines may be a useful in vitro model system for studies focusing on the mechanisms involved in the detachment of cells during the progression of ovarian cancer.  相似文献   

17.
Antisera were prepared in syngeneic hosts against subcellular fractions of simian virus 40 (SV40)-transformed cells (MoalphaPM, MoalphaNuc), glutaraldehydefixed SV40-transformed cells (HaalphaH-50-G, MoalphaVLM-G), and electrophoretically purified denatured SV40 tumor antigen (T-ag) (RaalphaT). Immune sera were also collected from animals bearing tumors induced by SV40-transformed cells (HaalphaT, MoalphaT, HAF) and from SV40-immunized animals that had rejected a transplant of SV40-transformed cells (HaalphaS, MoalphaS). Immunological reagents prepared against cell surface (MoalphaPM, HaalphaS, MoalphaS, HaalphaH-50-G, MoalphaVLM-G) reacted exclusively with the surface of SV40-transformed cells by indirect immunofluorescence or protein A surface antigen radioimmunoassay. Immunological reagents prepared against the nuclear fraction (MoalphaNuc) or whole-cell determinants (HaalphaT, MoalphaT, HAF, RaalphaT) reacted with both the nuclei and surface of SV40-transformed or -infected cells. All reagents were capable of immunoprecipitating 96,000-molecular weight large T-ag from solubilized whole cell extracts of SV40-transformed cells. The exclusive surface reactivity of HaalphaS exhibited in immunofluorescence tests was abolished by solubilization of subcellular fractions, which then allowed immunoprecipitation of T-ag by HaalphaS from both nuclear and plasma membrane preparations. Specificity was established by the fact that all T-reactive reagents failed to react in serological tests against chemically transformed mouse cells, and sera from mice bearing transplants chemically transformed mouse cells (MoalphaDMBA-2) failed to react with SV40-transformed mouse or hamster cells. Reagents demonstrating positive surface immunofluorescence and protein A radioimmunoassay reactions against SV40-transformed cells were capable of blocking the surface binding of RaalphaT to SV40-transformed cells in a double-antibody surface antigen radioimmunoassay. This blocking ability demonstrated directly that a component specificity of each surface-reactive reagent is directed against SV40 T-ag. A model is presented which postulates that the differential detection of T-ag by the various serological reagents is a reflection of immunogenic and antigenic differences between T-ag polypeptides localized in nuclei and plasma membranes.  相似文献   

18.
Simian virus 40 (SV40) was isolated from the brains of three rhesus monkeys and the kidneys of two other rhesus monkeys with simian immunodeficiency virus-induced immunodeficiency. A striking feature of these five cases was the tissue specificity of the SV40 replication. SV40 was also isolated from the kidney of a Taiwanese rock macaque with immunodeficiency probably caused by type D retrovirus infection. Multiple full-length clones were derived from all six fresh SV40 isolates, and two separate regions of their genomes were sequenced: the origin (ori)-enhancer region and the coding region for the carboxy terminus of T antigen (T-ag). None of the 23 clones analyzed had two 72-bp enhancer elements as are present in the commonly used laboratory strain 776 of SV40; 22 of these 23 clones were identical in their ori-enhancer sequences, and these had only a single 72-bp enhancer element. We found no evidence for differences in ori-enhancer sequences associated with tissue-specific SV40 replication. The T-ag coding sequence that was analyzed was identical in all clones from kidney. However, significant variation was observed in the carboxy-terminal region of T-ag in SV40 isolated from brain tissues. This sequence variation was located in a region previously reported to be responsible for SV40 host range in cultured cell lines. Thus, SV40 appears to be an opportunistic pathogen in the setting of simian immunodeficiency virus-induced immunodeficiency, similarly to JC virus in human immunodeficiency virus-infected humans, the enhancer sequence organization generally attributed to SV40 is not representative of natural SV40 isolates, and sequence variation near the carboxy terminus of T-ag may play a role in tissue-specific replication of SV40.  相似文献   

19.
Summary Human gastric epithelial cells were isolated from samples of human gastric lining and immortalized with simian virus 40 (SV40) to generate the stable human gastric epithelial cell line “JOK-1” These cells express conventional, epithelial markers (vimentin, cytokeratin-18, occludin, N-and E-cadherins, β-catenin, ZO-1, ZO-2, mucin, epithelial specific antigen) as well as SV40 large T-antigen. These cells rapidly externalized E-cadherin in response to acidic medium, and exhibited epitheliallike barrier properties that are also regulated by media pH. In contrast, the kidney epithelial cell line “MDCK” also expresses serveral epithelial markers (vimentin, cytokeratin-18, occludin, N-and E-cadherin, β-catenin, ZO-1, ZO-2, epithelial specific antigen), but does not express mucin, or large T-antigen. However, MDCK rapidly internalize their E-cadherin from the cell surface and increase the solute flux in an acidic medium. These data suggest that the JOK-1 cell line is a potentially useful cell line for developing models of gastric epithelial function, development, and disease.  相似文献   

20.
We have developed immortalized epithelial cystic fibrosis (CF) cell lines by infecting cultured nasal polyp cells with a SV40/Adenol2 hybrid virus. The cell lines obtained are epithelial in nature as shown by cytokeratin production and morphology, although cytokeratins 4 and 13 typical of primary nasal polyp cells are produced at a much reduced rate. Ussing chamber experiments showed that the precrisis CF cell line NCF3 was able to perform trans-cellular chloride transport when activated by agents which elevate intracellular calcium. cAMP agonists had no effect on chloride flux in NCF3 as expected for CF cells. The apical chloride channels found with the patch clamp technique in NCF3 and in the postcrisis cell line NCF3A have a conductance similar to that of chloride channels found earlier in normal and CF epithelial cells. The channels show a delay in the onset of activity in off-cell patches and are not activated by increased cAMP levels in the cell. This indicates that immortalized CF epithelial cells will provide a useful model for the study of cystic fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号