首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
D Moazed  H F Noller 《Cell》1986,47(6):985-994
Binding of tRNAPhe to ribosomes shields a set of highly conserved nucleotides in 16S rRNA from attack by a combination of structure-specific chemical probes. The bases can be classified according to whether or not their protection is strictly poly(U)-dependent (G529, G530, U531, A1408, A1492, and A1493) or poly(U)-independent (A532, G693, A794, C795, G926, 2mG966, G1338, A1339, U1381, C1399, C1400, and G1401). A third class (A790, G791, and A909) is shielded by both tRNA and 50S ribosomal subunits. Similar results are obtained when the protecting ligand is tRNAPhe E. Coli, tRNAPhe yeast, tRNAPhe E. Coli lacking its 3' terminal CA, or the 15 nucleotide anticodon stem-loop fragment of tRNAPhe yeast. Implications for structural correlates of the classic ribosomal A- and P-sites and for the possible involvement of 16S rRNA in translational proofreading are discussed.  相似文献   

2.
We used site-directed mutagenesis to probe the function of four alternating arginines located at amino acid positions 525, 527, 529, and 531 in a highly conserved region of domain III in the Cry1Ac toxin of Bacillus thuringiensis. We created 10 mutants: eight single mutants, with each arginine replaced by either glycine (G) or aspartic acid (D), and two double mutants (R525G/R527G and R529G/R531G). In lawn assays of the 10 mutants with a cultured Choristoneura fumiferana insect cell line (Cf1), replacement of a single arginine by either glycine or aspartic acid at position 525 or 529 decreased toxicity 4- to 12-fold relative to native Cry1Ac toxin, whereas replacement at position 527 or 531 decreased toxicity only 3-fold. The reduction in toxicity seen with double mutants was 8-fold for R525G/R527G and 25-fold for R529G/R531G. Five of the mutants (R525G, R525D, R527G, R529D, and R525G/R527G) were tested in bioassays with Plutella xylostella larvae and ion channel formation in planar lipid bilayers. In the bioassays, R525D, R529D, and R525G/R527G showed reduced toxicity. In planar lipid bilayers, the conductance and the selectivity of the mutants were similar to those of native Cry1Ac. Toxins with alteration at position 527 or 529 tended to remain in their subconducting states rather than the maximally conducting state. Our results suggest that the primary role of this conserved region is to maintain both the structural integrity of the native toxin and the full functionality of the formed membrane pore.  相似文献   

3.
Mutations in the 5' untranslated regions (5'-UTRs) of all three serotypes of the Sabin vaccine strains are known to be major determinants of the attenuation phenotype. To further understand the functional basis of the attenuation phenotype caused by mutations in the 5'-UTR, we studied their effects on viral replication, translation, and the interaction of the viral RNA with cell proteins. A mutation at base 472 (C472U), which attenuates neurovirulence in primates and mice, was previously found to reduce viral replication and translation in neuroblastoma cells but not in HeLa cells. This mutation reduced cross-linking of the poliovirus 5'-UTR to polypyrimidine tract-binding protein (pPTB) in neuroblastoma cells but not in HeLa cells. These defects were absent in a neurovirulent virus with C at nucleotide 472. When C472U and an additional mutation, G482A, were introduced into the 5'-UTR, the resulting virus was more attenuated, had a replication and translation defect in both HeLa cells and neuroblastoma cells, and cross-linked poorly to pPTB from both cell types. A neurovirulent revertant of this virus (carrying U472C, G482A, and C529U) no longer had a replication defect in HeLa and SH-SY5Y cell lines and cross-linked with pPTB to wild-type levels. The results suggest that the attenuating effects of the mutation C472U may result from an impaired interaction of the 5'-UTR with pPTB in neural cells, which reduces viral translation and replication. Introduction of a second mutation, G482A, into the 5'-UTR extends this defect to HeLa cells.  相似文献   

4.
We used site-directed mutagenesis to probe the function of four alternating arginines located at amino acid positions 525, 527, 529, and 531 in a highly conserved region of domain III in the Cry1Ac toxin of Bacillus thuringiensis. We created 10 mutants: eight single mutants, with each arginine replaced by either glycine (G) or aspartic acid (D), and two double mutants (R525G/R527G and R529G/R531G). In lawn assays of the 10 mutants with a cultured Choristoneura fumiferana insect cell line (Cf1), replacement of a single arginine by either glycine or aspartic acid at position 525 or 529 decreased toxicity 4- to 12-fold relative to native Cry1Ac toxin, whereas replacement at position 527 or 531 decreased toxicity only 3-fold. The reduction in toxicity seen with double mutants was 8-fold for R525G/R527G and 25-fold for R529G/R531G. Five of the mutants (R525G, R525D, R527G, R529D, and R525G/R527G) were tested in bioassays with Plutella xylostella larvae and ion channel formation in planar lipid bilayers. In the bioassays, R525D, R529D, and R525G/R527G showed reduced toxicity. In planar lipid bilayers, the conductance and the selectivity of the mutants were similar to those of native Cry1Ac. Toxins with alteration at position 527 or 529 tended to remain in their subconducting states rather than the maximally conducting state. Our results suggest that the primary role of this conserved region is to maintain both the structural integrity of the native toxin and the full functionality of the formed membrane pore.  相似文献   

5.
6.
7.
We prepared several mutants of the J3/4 and P4 domains of Escherichia coli ribonuclease P (RNase P): A62G, A62U, G63C/G64C, A65G, A67G, U69A, U69G, U69C, U69Delta, and U69UU. Comparison of the ribozyme and holo enzyme reactions at various concentrations of magnesium ions showed that the presence of a bulge at U69 in the P4 domain was important in the holo enzyme. The results also showed that the conserved bases G63 and G64 in the J3/4 domain were important for efficient ribozyme reactions but were replaceable in the presence of the protein component. Our data showed that the bases in the J3/4 and P4 domains displayed different responses to the metal ions that were affected by the presence of the protein component.  相似文献   

8.
Ebola viruses contain a single glycoprotein (GP) spike, which functions as a receptor binding and membrane fusion protein. It contains a highly conserved hydrophobic region (amino acids 524 to 539) located 24 amino acids downstream of the N terminus of the Ebola virus GP2 subunit. Comparison of this region with the structural features of the transmembrane subunit of avian retroviral GPs suggests that the conserved Ebola virus hydrophobic region may, in fact, serve as the fusion peptide. To test this hypothesis directly, we introduced conservative (alanine) and nonconservative (arginine) amino acid substitutions at eight positions in this region of the GP2 molecule. The effects of these mutations were deduced from the ability of the Ebola virus GP to complement the infectivity of a vesicular stomatitis virus (VSV) lacking the receptor-binding G protein. Some mutations, such as Ile-to-Arg substitutions at positions 532 (I532R), F535R, G536A, and P537R, almost completely abolished the ability of the GP to support VSV infectivity without affecting the transport of GP to the cell surface and its incorporation into virions or the production of virus particles. Other mutations, such as G528R, L529A, L529R, I532A, and F535A, reduced the infectivity of the VSV-Ebola virus pseudotypes by at least one-half. These findings, together with previous reports of liposome association with a peptide corresponding to positions 524 to 539 in the GP molecule, offer compelling support for a fusion peptide role for the conserved hydrophobic region in the Ebola virus GP.  相似文献   

9.
10.
Micro-injection into the oocytes and eggs of Xenopus laevis was used to ascertain the effects of synthetic polyribonucleotides on protein synthesis in living cells. Poly(U) and poly(A) were not translated detectably, nor did they change the rate of endogenous protein synthesis. The same was true of poly(G,U), poly(A,G,U), poly(A,C,G,U), G-U-G-(U)(n), A-(U)(n) and AUG. In contrast, A-U-G-(U)(n) was a potent inhibitor of protein synthesis in the cell. This might be because it is initiated normally but lacks a termination codon, or because it inhibits the translation of other molecules in some way not dependent on its normal initiation. Poly(G,U), poly(A,G,U) and poly(A,C,G,U) inhibited haemoglobin synthesis when they were injected into the oocyte with haemoglobin mRNA. The synthetic polyribonucleotides did not inhibit the translation of the natural mRNA when the two sorts of molecules were injected at different times. It is suggested that the synthetic RNA molecules compete with the natural mRNA for a pre-initiation factor in limited supply.  相似文献   

11.
We have studied in vivo the phenotypes of 23S rRNA mutations G2582A, G2582U, G2583C, and U2584C, which are located at the A site of Escherichia coli 50S ribosomal subunit. All mutant rRNAs incorporated into 50S ribosomal subunits. Upon sucrose gradient fraction of cell lysates, 23S rRNAs mutated at G2582 to A and G2583 to C accumulated in the 50S and 70S fractions and were under-represented in the polysome fraction. Induction of 23S rRNAs mutated at G2582 and G2583 lead to a drastic reduction in cell growth. In addition, mutations G2582A and G2583C reduced to one-third the total protein synthesis but not the RNA synthesis. Finally, we show that 23S rRNA mutations G2582A, G2582U, and G2583C cause a significant increase in peptidyl-tRNA drop-off from ribosomes, thereby reducing translational processivity. The results clearly show that tRNA-23S rRNA interaction has an essential role in maintaining the processivity of translation.  相似文献   

12.
Application of ribozymes for knockdown of RNA targets requires the identification of suitable target sites according to the consensus sequence. For the hairpin ribozyme, this was originally defined as Y?2 N?1 *G+1 U+2 Y+3 B+?, with Y = U or C, and B = U, C or G, and C being the preferred nucleobase at positions -2 and +4. In the context of development of ribozymes for destruction of an oncogenic mRNA, we have designed ribozyme variants that efficiently process RNA substrates at U?2 G?1 *G+1 U+2 A+3 A+? sites. Substrates with G?1 *G+1 U+2 A+3 sites were previously shown to be processed by the wild-type hairpin ribozyme. However, our study demonstrates that, in the specific sequence context of the substrate studied herein, compensatory base changes in the ribozyme improve activity for cleavage (eight-fold) and ligation (100-fold). In particular, we show that A+3 and A+? are well tolerated if compensatory mutations are made at positions 6 and 7 of the ribozyme strand. Adenine at position +4 is neutralized by G? →U, owing to restoration of a Watson-Crick base pair in helix 1. In this ribozyme-substrate complex, adenine at position +3 is also tolerated, with a slightly decreased cleavage rate. Additional substitution of A? with uracil doubled the cleavage rate and restored ligation, which was lost in variants with A?, C? and G?. The ability to cleave, in conjunction with the inability to ligate RNA, makes these ribozyme variants particularly suitable candidates for RNA destruction.  相似文献   

13.
Y M Hou  P Schimmel 《Biochemistry》1992,31(42):10310-10314
A single G3:U70 base pair in the acceptor helix is the major determinant of alanine acceptance in alanine transfer RNAs. Transfer of this base pair into other transfer RNAs confers alanine acceptance. A G3:C70 substitution eliminates alanine acceptance in vivo and in vitro. In this work, a population of mutagenized G3:C70 alanine tRNA amber suppressors was subjected to a selection for mutations that compensate for the inactivating G3:C70 substitution. No compensatory mutations located in the acceptor helix were obtained. Instead, a U27:U43 substitution that replaced the wild-type C27:G43 in the anticodon stem created a U27:U43/G3:C70 mutant alanine tRNA that inserts alanine at amber codons in vivo. The U27:U43 substitution is at a location where previous footprinting work established an RNA-protein contact. Thus, this mutation may act by functionally coupling a distal part of the tRNA structure to the active site.  相似文献   

14.
Maiväli  Ü.  Saarma  U.  Remme  J. 《Molecular Biology》2001,35(4):569-574
We have studied in vivothe phenotypes of 23S rRNA mutations G2582A, G2582U, G2583C, and U2584C, which are located at the A site of Escherichia coli50S ribosomal subunit. All mutant rRNAs incorporated into 50S ribosomal subunits. Upon sucrose gradient fractionation of cell lysates, 23S rRNAs mutated at G2582 to A and G2583 to C accumulated in the 50S and 70S fractions and were underrepresented in the polysome fraction. Induction of 23S rRNAs mutated at G2582 and G2583 lead to a drastic reduction in cell growth. In addition, mutations G2582A and G2583C reduced to one-third the total protein synthesis but not the RNA synthesis. Finally, we show that 23S rRNA mutations G2582A, G2582U, and G2583C cause a significant increase in peptidyl-tRNA drop-off from ribosomes, thereby reducing translational processivity. The results clearly show that tRNA–23S rRNA interaction has an essential role in maintaining the processivity of translation.  相似文献   

15.
The cloverleaf stem segments of the suppressor gene of bacteriophage T4 tRNA(Gln) contain ten G.C and ten A.U base-pairs. To gain a better appreciation of the G.C base-pair requirement, we isolated multiple mutants of this suppressor gene in which base-pairs of G.C were replaced by A.U. One active suppressor gene contained only A.U base-pairs on the anticodon stem, indicating that G.C base-pairs in this region of tRNA(Gln) are not essential for function. In contrast, replacement was not possible at two base-pairs on the D stem and at one base-pair on the T stem.  相似文献   

16.
Domain 5 (D5) is a highly conserved, largely helical substructure of group II introns that is essential for self-splicing. Only three of the 14 base pairs present in most D5 structures (A2.U33, G3.U32, and C4.G31) are nearly invariant. We have studied effects of point mutations of those six nucleotides on self-splicing and in vivo splicing of aI5 gamma, an intron of the COXI gene of Saccharomyces cerevisiae mitochondria. Though none of the point mutations blocked self-splicing under one commonly used in vitro reaction condition, the most debilitating mutations were at G3 and G4. Following mitochondrial Biolistic transformation, it was found that mutations at A2, G3, and C4 blocked respiratory growth and splicing while mutations at the other sites had little effect on either phenotype. Intra-D5 second-site suppressors showed that pairing between nucleotides at positions 2 and 33 and 4 and 31 is especially important for D5 function. At the G3.U32 wobble pair, the mutant A.U pair blocks splicing, but a revertant of that mutant that can form an A+.C base pair regains some splicing. A dominant nuclear suppressor restores some splicing to the G3A mutant but not the G3U mutant, suggesting that a purine is required at position 3. These findings are discussed in terms of the hypothesis of Madhani and Guthrie (H. D. Madhani and C. Guthrie, Cell 71:803-817, 1992) that helix 1 formed between yeast U2 and U6 small nuclear RNAs may be the spliceosomal cognate of D5.  相似文献   

17.
S J Park  Y M Hou  P Schimmel 《Biochemistry》1989,28(6):2740-2746
A single G3.U70 base pair in the acceptor helix is a major determinant of the identity of an alanine transfer RNA. Alteration of this base pair to A.U or G.C prevents aminoacylation with alanine. We show here that, at approximate physiological conditions (pH 7.5, 37 degrees C), high concentrations of the mutant A3.U70 species do not inhibit aminoacylation of a wild-type alanine tRNA. The observation suggests that, under these conditions, the G3 to A3 substitution increases Km for tRNA by more than 30-fold. Other experiments at pH 7.5 show that no aminoacylation of A3.U70, G3.C70, or U3.G70 mutant tRNAs occurs with substrate levels of enzyme. This suggests that kcat for these mutant tRNAs is sharply reduced as well and that the catalytic defect is not due to slow release of charged mutant tRNAs from the enzyme. Investigations were also done at pH 5.5, where association of tRNAs with synthetases is generally stronger and where binding can be conveniently measured apart from aminoacylation. Under these conditions, the binding of the A3.U70 and G3.C70 species is readily detected and is only 3-5-fold weaker than the binding of the wild-type tRNA. Although the A3.U70 species was demonstrated to compete with the wild-type tRNA for the same site on the enzyme, no aminoacylation could be detected. Thus, even when conditions are adjusted to obtain strong competitive binding, a sharp reduction in kcat prevents aminoacylation of a tRNA(Ala) species with a substitution at position 3.70.  相似文献   

18.
Group I self-splicing introns have a 5' splice site duplex (P1) that contains a single conserved base pair (U.G). The U is the last nucleotide of the 5' exon, and the G is part of the internal guide sequence within the intron. Using site-specific mutagenesis and analysis of the rate and accuracy of splicing of the Tetrahymena thermophila group I intron, we found that both the U and the G of the U.G pair are important for the first step of self-splicing (attack of GTP at the 5' splice site). Mutation of the U to a purine activated cryptic 5' splice sites in which a U.G pair was restored; this result emphasizes the preference for a U.G at the splice site. Nevertheless, some splicing persisted at the normal site after introduction of a purine, suggesting that position within the P1 helix is another determinant of 5' splice site choice. When the U was changed to a C, the accuracy of splicing was not affected, but the Km for GTP was increased by a factor of 15 and the catalytic rate constant was decreased by a factor of 7. Substitution of U.A, U.U, G.G, or A.G for the conserved U.G decreased the rate of splicing by an even greater amount. In contrast, mutation of the conserved G enhanced the second step of splicing, as evidenced by a trans-splicing assay. Furthermore, a free 5' exon ending in A or C instead of the conserved U underwent efficient ligation. Thus, unlike the remainder of the P1 helix, which functions in both the first and second steps of self-splicing, the conserved U.G appears to be important only for the first step.  相似文献   

19.
The cytoplasmic initiator tRNA from the green alga Scenedesmus obliquus has been purified and its sequence shown to be p A G C U G A G-U m G m G C G C A G D G G A A G C G psi m G A psi G G G C U C A U t A A--C C C A U A G m G D m C A C A G G A U C G m A A A C C U Gm U C U C A--G C U A C C A-O H. The sequence has been deduced and confirmed using several different P-post labelling techniques. The sequence is similar to those of other eukaryotic cytoplasmic initiator tRNAs and it has the sequence G A U C in place of the usual G T psi C. Although it resembles lower eukaryotic species in having a U preceding the anticodon and a modified G in the T psi C stem, in overall homology it is closer to the higher eukaryotic than to the fungal initiator tRNAs.  相似文献   

20.
Transfer RNA protects a characteristic set of bases in 16 S rRNA from chemical probes when it binds to ribosomes. We used several criteria, based on construction of well-characterized in vitro ribosome-tRNA complexes, to assign these proteins to A or P-site binding. All of these approaches lead to similar conclusions. In the A site, tRNA caused protection of G529, G530, A1492 and A1493 (strongly), and A1408 and G1494 (weakly). In the P site, the protected bases are G693, A794, C795, G926 and G1401 (strong), and A532, G966, G1338 and G1339 (weak). In contrast to what is observed for 23 S rRNA, blocking the release of EF-Tu.GDP from the ribosome by kirromycin has no detectable effect on the protection of bases in 16 S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号