首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Transaminations catalysed by brain glutamate decarboxylase.   总被引:7,自引:0,他引:7       下载免费PDF全文
In addition to normal decarboxylation of glutamate to 4-aminobutyrate, glutamate decarboxylase from pig brain was shown to catalyse decarboxylation-dependent transamination of L-glutamate and direct transamination of 4-aminobutyrate with pyridoxal 5'-phosphate to yield succinic semialdehyde and pyridoxamine 5'-phosphate in a 1:1 stoichiometric ratio. Both reactions result in conversion of holoenzyme into apoenzyme. With glutamate as substrate the rates of transamination differed markedly among the three forms of the enzyme (0.008, 0.012 and 0.029% of the rate of 4-aminobutyrate production by the alpha-, beta- and gamma-forms at pH 7.2) and accounted for the differences among the forms in rates of inactivation by glutamate and 4-aminobutyrate. Rates of transamination were maximal at about pH 8 and varied in parallel with the rate constants for inactivation from pH 6.5 to 8.0. Rates of transamination of glutamate and 4-aminobutyrate were similar, suggesting that the decarboxylation step is not entirely rate-limiting in the normal mechanism. The transamination was reversible, and apoenzyme could be reconstituted to holoenzyme by reverse transamination with succinic semialdehyde and pyridoxamine 5'-phosphate. As a major route of apoenzyme formation, the transamination reaction appears to be physiologically significant and could account for the high proportion of apoenzyme in brain.  相似文献   

2.
The metabolism of 1,4-14C-succinate and 2,3-14C-succinate and the activity of succinic semialdehyde dehydrogenase (EC 1.2.1.16) were studied in germinating seeds of castor oil plants (Ricinus communis L.). Succinate metabolism involved succinate dehydrogenase and was sensitive to metabolites of the gamma-aminobutyric acid shunt. Considerable accumulation of the label in amino acids reflected the progression of transamination reactions. Succinic semialdehyde dehydrogenase was purified from the endosperm of castor oil plants. Kinetic characteristics of the enzyme were evaluated. Our study indicates that the mobilization of respiratory substrates during germination of castor oil plants is related to active transamination of ketoacids in the Krebs cycle and involves the gamma-aminobutyric acid shunt.  相似文献   

3.
Conversion of glutamate 1-semialdehyde to the tetrapyrrole precursor, 5-aminolevulinate, takes place in an aminomutase-catalyzed reaction involving transformations at both the non-chiral C5 and the chiral C4 of the intermediate 4,5-diaminovalerate. Presented with racemic diaminovalerate and an excess of succinic semialdehyde, the enzyme catalyzes a transamination in which only the l-enantiomer is consumed. Simultaneously, equimolar 4-aminobutyrate and aminolevulinate are formed. The enzyme is also shown to transaminate aminolevulinate and 4-aminohexenoate to l-diaminovalerate as the exclusive amino product. The interaction of the enzyme with pure d- and l-enantiomers of diaminovalerate prepared by these reactions is described. Transamination of l-diaminovalerate yielded aminolevulinate quantitatively showing that reaction at the C5 amine does not occur significantly. A much slower transamination reaction was catalyzed with d-diaminovalerate as substrate. One product of this reaction, 4-aminobutyrate, was formed in the amount equal to that of the diaminovalerate consumed. Glutamate semialdehyde was deduced to be the other primary product and was also measured in significant amounts when a high concentration of the enzyme in its pyridoxal form was reacted with d-diaminovalerate in a single turnover. Single turnover reactions showed that both enantiomers of diaminovalerate converted the enzyme from its 420-nm absorbing pyridoxaldimine form to the 330-nm absorbing pyridoxamine via rapidly formed intermediates with different absorption spectra. The intermediate formed with l-DAVA (lambdamax = 420 nm) was deduced to be the protonated external aldimine with the 4-amino group. The intermediate formed with d-DAVA (lambdamax = 390 nm) was deduced to be the unprotonated external aldimine with the 5-amino group.  相似文献   

4.
An NAD+ dependent succinic semialdehyde dehydrogenase from bovine brain was inactivated by pyridoxal-5'- phosphate. Spectral evidence is presented to indicate that the inactivation proceeds through formation of a Schiff's base with amino groups of the enzyme. After NaBH(4) reduction of the pyridoxal-5'-phosphate inactivated enzyme, it was observed that 3.8 mol phosphopyridoxyl residues were incorporated/enzyme tetramer. The coenzyme, NAD+, protected the enzyme against inactivation by pyridoxal-5'-phosphate. The absorption spectrum of the reduced and dialyzed pyridoxal-5'-phosphate-inactivated enzyme showed a characteristic peak at 325 nm, which was absent in the spectrum of the native enzyme. The fluorescence spectrum of the pyridoxyl enzyme differs completely from that of the native enzyme. After tryptic digestion of the enzyme modified with pyridoxal-5'-phosphate followed by [3H]NaBH4 reduction, a radioactive peptide absorbing at 210 nm was isolated by reverse-phase HPLC. The sequences of the peptide containing the phosphopyridoxyllysine were clearly identical to sequences of other mammalian succinic semialdehyde dehydrogenase brain species including human. It is suggested that the catalytic function of succinic semialdehyde dehydrogenase is modulated by binding of pyridoxal-5'-phosphate to specific Lys(347) residue at or near the coenzyme-binding site of the protein.  相似文献   

5.
The neuromodulator gamma-hydroxybutyrate is synthesized in vivo from gamma-aminobutyrate by transamination to succinic semialdehyde and subsequent reduction of the aldehyde group. In human brain, succinic semialdehyde reductase is thought to be responsible for the conversion of succinic semialdehyde to gamma-hydroxybutyrate. In the present work, we cloned the cDNA coding for succinic semialdehyde reductase and expressed it in Escherichia coli. A data bank search indicated that the enzyme is identical with aflatoxin B1-aldehyde reductase, an enzyme implicated in the detoxification of xenobiotic carbonyl compounds. Structurally, succinic semialdehyde reductase thus belongs to the aldo-keto reductase superfamily. The recombinant protein was indistinguishable from native human brain succinic semialdehyde reductase by SDS/PAGE. In addition to succinic semialdehyde, it readily catalyzed the reduction 9,10-phenanthrene quinone, phenylglyoxal and 4-nitrobenzaldehyde, typical substrates of aflatoxin B1 aldehyde reductase. The results suggest multiple functions of succinic semialdehyde reductase/aflatoxin B1 aldehyde reductase in the biosynthesis of gamma-hydroxybutyrate and the detoxification of xenobiotic carbonyl compounds, respectively.  相似文献   

6.
Incubation of an NAD+-dependent succinic semialdehyde dehydrogenase from bovine brain with 4-dimethylaminoazobenzene-4-iodoacetamide (DABIA) resulted in a time-dependent loss of enzymatic activity. This inactivation followed pseudo first-order kinetics with a second-order rate constant of 168 m(-1).min(-1). The spectrum of DABIA-labeled enzyme showed a characteristic peak of the DABIA alkylated sulfhydryl group chromophore at 436 nm, which was absent from the spectrum of the native enzyme. A linear relationship was observed between DABIA binding and the loss of enzyme activity, which extrapolates to a stoichiometry of 8.0 mol DABIA derivatives per mol enzyme tetramer. This inactivation was prevented by preincubating the enzyme with substrate, succinic semialdehyde, but not by preincubating with coenzyme NAD+. After tryptic digestion of the enzyme modified with DABIA, two peptides absorbing at 436 nm were isolated by reverse-phase HPLC. The amino acid sequences of the DABIA-labeled peptides were VCSNQFLVQR and EVGEAICTDPLVSK, respectively. These sites are identical to the putative active site sequences of other brain succinic semialdehyde dehydrogenases. These results suggest that the catalytic function of succinic semialdehyde dehydrogenase is inhibited by the specific binding of DABIA to a cysteine residue at or near its active site.  相似文献   

7.
James CL  Viola RE 《Biochemistry》2002,41(11):3726-3731
The direct channeling of an intermediate between enzymes that catalyze consecutive reactions in a pathway offers the possibility of an efficient, exclusive, and protected means of metabolite delivery. Aspartokinase-homoserine dehydrogenase I (AK-HDH I) from Escherichia coli is an unusual bifunctional enzyme in that it does not catalyze consecutive reactions. The potential channeling of the intermediate beta-aspartyl phosphate between the aspartokinase of this bifunctional enzyme and aspartate semialdehyde dehydrogenase (ASADH), the enzyme that catalyzes the intervening reaction, has been examined. The introduction of increasing levels of inactivated ASADH has been shown to compete against enzyme-enzyme interactions and direct intermediate channeling, leading to a decrease in the overall reaction flux through these consecutive enzymes. These same results are obtained whether these experiments are conducted with aspartokinase III, a naturally occurring monofunctional isozyme, with an artificially produced monofunctional aspartokinase I, or with a fusion construct of AK I-ASADH. These results provide definitive evidence for the channeling of beta-aspartyl phosphate between aspartokinase and aspartate semialdehyde dehydrogenase in E. coli and suggest that ASADH may provide a bridge to channel the intermediates between the non-consecutive reactions of AK-HDH I.  相似文献   

8.
E W Miles 《Biochemistry》1987,26(2):597-603
Tryptophan synthase is a versatile enzyme that catalyzes a wide variety of pyridoxal phosphate dependent reactions that are also catalyzed in model systems. These include beta-replacement, beta-elimination, racemization, and transamination reactions. We now show that the apo-alpha 2 beta 2 complex of tryptophan synthase will bind two unnatural substrates, pyridoxamine phosphate and indole-3-pyruvic acid, and will convert them by a single-turnover, half-transamination reaction to pyridoxal phosphate and L-tryptophan, the natural coenzyme and a natural product, respectively. This enzyme-catalyzed reaction is more rapid and more stereospecific than an analogous model reaction. The pro-S 4'-methylene proton of pyridoxamine phosphate is removed during the reaction, and the product is primarily L-tryptophan. We conclude that pyridoxal phosphate enzymes may be able to catalyze some unnatural reactions involving bound reactants and bound coenzyme since the coenzyme itself has the intrinsic ability to promote a variety of reactions.  相似文献   

9.
The metabolism of 1,4-14C-succinate and 2,3-14C-succinate and the activity of succinic semialdehyde dehydrogenase (EC 1.2.1.16) were studied in germinating seeds of castor oil plants (Ricinus communis L.). Succinate metabolism involved succinate dehydrogenase and was sensitive to metabolites of the γ-aminobutyric acid shunt. Considerable accumulation of the label in amino acids reflected the progression of transamination reactions. Succinic semialdehyde dehydrogenase was purified from the endosperm of castor oil plants. Kinetic characteristics of the enzyme were evaluated. Our study indicates that the mobilization of respiratory substrates during germination of castor oil plants is related to active transamination of ketoacids in the Krebs cycle and involves the γ-aminobutyric acid shunt.  相似文献   

10.
Rapid Inactivation of Brain Glutamate Decarboxylase by Aspartate   总被引:2,自引:2,他引:0  
In the absence of its cofactor, pyridoxal 5'-phosphate (pyridoxal-P), glutamate decarboxylase is rapidly inactivated by aspartate. Inactivation is a first-order process and the apparent rate constant is a simple saturation function of the concentration of aspartate. For the beta-form of the enzyme, the concentration of aspartate giving the half-maximal rate of inactivation is 6.1 +/- 1.3 mM and the maximal apparent rate constant is 1.02 +/- 0.09 min-1, which corresponds to a half-time of inactivation of 41 s. The rate of inactivation by aspartate is about 25 times faster than inactivation by glutamate or gamma-aminobutyric acid (GABA). Inactivation is accompanied by a rapid conversion of holoenzyme to apoenzyme and is opposed by pyridoxal-P, suggesting that inactivation results from an alternative transamination of aspartate catalyzed by the enzyme, as previously observed with glutamate and GABA. Consistent with this mechanism pyridoxamine 5'-phosphate, an expected transamination product, was formed when the enzyme was incubated with aspartate and pyridoxal-P. The rate of transamination relative to the rate of decarboxylation was much greater for aspartate than for glutamate. Apoenzyme formed by transamination of aspartate was reactivated with pyridoxal-P. In view of the high rate of inactivation, aspartate may affect the level of apoenzyme in brain.  相似文献   

11.
Glutamate decarboxylase has been purified from potato tubers. The final preparation was homogeneous as judged from native and sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Gel filtration on Sephadex G-200 gave a relative molecular mass Mr, of 91 000 for the native enzyme. Sodium dodecyl sulfate polyacrylamide gel electrophoresis gave a subunit Mr of 43 000. Thus the enzyme appears to be a dimer of identical subunits. It has 2 mol pyridoxal 5'-phosphate/mol protein, which could not be removed by exhaustive dialysis or gel filtration on Sephadex G-25. The enzyme has an absorption maximum at 370 nm in sodium phosphate buffer, pH 5.8. Reduction of the enzyme with sodium borohydride abolished the absorption maximum at 370 nm with attendant loss of catalytic activity. The enzyme exhibited pH-dependent spectral changes. The enzyme was specific for L-glutamate and could not decarboxylate other amino acids tested. The enzyme was maximally active at pH 5.8 and a temperature of 37 degrees C. Isoelectric focussing gave a pI of 4.7 Km values for L-glutamate and pyridoxal 5'-phosphate were 5.6 mM and 2 microM respectively. Thiol-directed reagents and heavy metal ions inhibited the enzyme, indicating that an -SH group is required for activity. The nature of the functional groups at the active site of the enzyme was inferred from competitive inhibition studies. L-Glutamate promoted inactivation of the enzyme caused by decarboxylation-dependent transamination was demonstrated. The characteristics of potato enzyme were compared with enzyme from other sources.  相似文献   

12.
Some kinetic properties of two new species of transaminase found in extracts of a β-lysine-utilizing Pseudomonas are reported. Transaminase A catalyzes transamination between 6-N-acetyl-l-β-lysine (3-amino-6-acetamidohexanoate) and α-ketoglutarate to form 3-keto-6-acetamidohexanoate and glutamate. Transaminase B catalyzes a reaction between 4-aminobutyrate and pyruvate to form succinic semialdehyde and alanine. The formation of both transaminases is induced by growth of the bacteria on l-β-lysine, although transaminase B is also produced in the absence of this substrate. Transaminase A requires pyridoxal phosphate for activity. The β-keto acid formed from acetyl-β-lysine by transaminase A has been purified and characterized by decarboxylation, conversion to a formazan, reduction to a stable β-hydroxy acid, and conversion of the latter to its methyl ester. Transaminase B, unlike previously reported transaminases utilizing 4-aminobutyrate, cannot use α-ketoglutarate as an amino group acceptor. This enzyme is not stimulated by addition of pyridoxal phosphate, but is inhibited by hydroxylamine or cyanide. Both transaminases appear to function in the main pathway of β-lysine degradation.  相似文献   

13.
Blatt, L. (University of Wisconsin, Madison), F. E. Dorer, and H. J. Sallach. Occurrence of hydroxypyruvate-l-glutamate transaminase in Escherichia coli and its separation from hydroxypyruvate-phosphate-l-glutamate transaminase. J. Bacteriol. 92:668-675. 1966.-The formation of l-serine from hydroxypyruvate by a transamination reaction with l-glutamate has been demonstrated in extracts of Escherichia coli. The level of activity with hydroxypyruvate is approximately one-tenth that observed with hydroxypyruvate-phosphate in cell-free extracts. The transamination of hydroxypyruvate, but not hydroxypyruvate-phosphate, is inhibited by inorganic phosphate. No marked differences in the levels of activity with hydroxypyruvate were observed in extracts from bacteria grown under different conditions. Heat treatment of enzyme preparations at 65 C rapidly destroys the activity with hydroxypyruvate-phosphate, but not that with hydroxypyruvate. Fractionation of extracts with lithium sulfate and alumina Cgamma resulted not only in a 10-fold purification, but also in a complete separation of the two activities, thereby establishing that two different enzymes are involved in the transamination of hydroxypyruvate and hydroxypyruvate-phosphate. Hydroxypyruvate transaminase is present in two mutants that require serine for growth. The inability of hydroxypyruvate to replace the growth requirement for serine, even to a limited extent, was shown to be due to the inability of the bacteria to accumulate this compound actively.  相似文献   

14.
A homogeneous glutamate decarboxylase isolated from pig brain contains 0.8 mol of tightly bound pyridoxal 5-phosphate/enzyme dimer. Upon addition of exogenous pyridoxal 5-phosphate (pyridoxal-5-P), the enzyme acquires maximum catalytic activity. Preincubation of the enzyme with L-glutamate (10 mM) brings about changes in the absorption spectrum of bound pyridoxal-5-P with the concomitant formation of succinic semialdehyde. However, the rate of this slow secondary reaction, i.e. decarboxylative transamination, is 10(-4) times the rate of normal decarboxylation. It is postulated that under physiological conditions enzymatically inactive species of glutamate decarboxylase, generated by the process of decarboxylative transamination, are reconstituted by pyridoxal-5-P produced by the cytosolic enzymes pyridoxal kinase and pyridoxine-5-P oxidase. The catalytic activity of resolved glutamate decarboxylase is recovered by preincubation with phospho-pyridoxyl-ethanolamine phosphate. The experimental evidence is consistent with the interpretation that the resolved enzyme binds the P-pyridoxyl analog, reduces the stability of the covalent bond of the phospho-pyridoxyl moiety, and catalyzes the formation of pyridoxal-5-P.  相似文献   

15.
Abstract— An NADP+ -linked enzyme, capable of interconverting γ-hydroxybutyrate and succinic semialdehyde, has been isolated from hamster liver and brain. The enzyme which was isolated from liver has been purified 300-fold and exhibits a single band by polyacrylamide gel electrophoresis. The molecular weight of the enzyme is - 31,000 as estimated from gel filtration and 38,000 as estimated from sodium dodccyl sulfate gel electrophoresis. The enzyme is inhibited by amobarbital, diphenylhy-dantoin, 2-propylvalerate, and diethyldithiocarbamate, but not by pyrazole. The enzymes from brain and liver appear to be very similar with regard to their molecular weights and their kinetic constants for γ-hydroxybutyrate and succinic semialdehyde.  相似文献   

16.
In histidine biosynthesis, histidinol-phosphate aminotransferase catalyzes the transfer of the amino group from glutamate to imidazole acetol-phosphate producing 2-oxoglutarate and histidinol phosphate. In some organisms such as the hyperthermophile Thermotoga maritima, specific tyrosine and aromatic amino acid transaminases have not been identified to date, suggesting an additional role for histidinol-phosphate aminotransferase in other transamination reactions generating aromatic amino acids. To gain insight into the specific function of this transaminase, we have determined its crystal structure in the absence of any ligand except phosphate, in the presence of covalently bound pyridoxal 5'-phosphate, of the coenzyme histidinol phosphate adduct, and of pyridoxamine 5'-phosphate. The enzyme accepts histidinol phosphate, tyrosine, tryptophan, and phenylalanine, but not histidine, as substrates. The structures provide a model of how these different substrates could be accommodated by histidinol-phosphate aminotransferase. Some of the structural features of the enzyme are more preserved between the T. maritima enzyme and a related threonine-phosphate decarboxylase from S. typhimurium than with histidinol-phosphate aminotransferases from different organisms.  相似文献   

17.
Methylmalonate semialdehyde dehydrogenase was purified from rat liver in order to define the distal portion of valine catabolism and related pathways in mammals. The purified enzyme is active with malonate semialdehyde and consumes both stereoisomers of methylmalonate semialdehyde, implicating a single semialdehyde dehydrogenase in the catabolism of valine, thymine, and compounds catabolized by way of beta-alanine. The oxidation of malonate and methylmalonate semialdehydes by this enzyme is CoA-dependent, the products being acetyl-CoA and propionyl-CoA, respectively. Expected activity with ethylmalonate semialdehyde as substrate was not found. Methylmalonate semialdehyde dehydrogenase was separated on DEAE-Sephacel into two isoforms which differ in mobility during nondenaturing polyacrylamide gel electrophoresis. The two forms are immunologically cross-reactive and exhibit the same N-terminal sequence, suggesting that one form is the product of the other. The monomer molecular mass, determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, was 58 kDa. The native molecular mass, estimated by gel filtration, was 250 kDa, suggesting a tetrameric structure.  相似文献   

18.
The kinase and sugar phosphate exchange reactions of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were inactivated by treatment with 5'-p-fluorosulfonylbenzoyladenosine or 8-azido-ATP, but activity could be restored by the addition of dithiothreitol. This inactivation was accompanied by incorporation of 5'-p-sulfonylbenzoyl[8-14C]adenosine into the enzyme that was not released by the addition of dithiothreitol. The lack of effect of ATP analogs on the ATP/ADP exchange or on bisphosphatase activity and reversal of their effects on the kinase and sugar phosphate reactions by dithiothreitol suggest that 1) they reacted with sulfhydryl groups important for sugar phosphate binding in the kinase reaction, and 2) the inactivation of the kinase by these analogs involves a specific reaction that is not related to their general mechanism of attacking nucleotide-binding sites. In addition, alkylation of the enzymes' sulfhydryls with iodoacetamide prevented inactivation by 5'-p-fluorosulfonylbenzoyladenosine, suggesting that the same thiols were involved. o-Iodosobenzoate inactivated the kinase and sugar phosphate exchange; the inactivation was reversed by dithiothreitol; but there was no effect on the bisphosphatase or nucleotide exchange, indicating that oxidation occurred at the same sulfhydryl that are associated with sugar phosphate binding. ATP or ADP, but not fructose 6-phosphate, protected these groups from modification by 5'-p-fluorosulfonylbenzoyladenosine, 8-azido-ATP, and o-iodosobenzoate. ATP also induced dramatic changes in the circular dichroism spectrum of the enzyme, suggesting that adenine nucleotide protection of thiol groups resulted from changes in enzyme secondary structure. Analysis of cyanogen bromide fragments of 14C-carboxamidomethylated enzyme showed that all radioactivity was associated with cysteinyl residues in a single cyanogen bromide fragment. Three of these cysteinyl residues are clustered in a 38-residue region, which probably plays a role in maintaining the conformation of the kinase sugar phosphate-binding site.  相似文献   

19.
Summary We have studied the transamination pathway (3-mercaptopyruvate pathway) ofl-cysteine metabolism in rats. Characterization of cysteine aminotransferase (EC 2.6.1.3) from liver indicated that the transamination, the first reaction of this pathway, was catalyzed by aspartate aminotransferase (EC 2.6.1.1). 3-Mercaptopyruvate, the product of the transamination, may be metabolized through two routes. The initial reactions of these routes are reduction and transsulfuration, and the final metabolites are 3-mercaptolactate-cysteine mixed disulfide [S-(2-hydroxy-2-carboxyethylthio)cysteine, HCETC] and inorganic sulfate, respectively. The study using anti-lactate dehydrogenase antiserum proved that the enzyme catalyzing the reduction of 3-mercaptopyruvate was lactate dehydrogenase (EC 1.1.1.27). Formation of HCETC was shown to depend on low 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) activity. Results were discussed in relation to HCETC excretion in normal human subjects and patients with 3-mercaptolactate-cysteine disulfiduria. Incubation of liver mitochondria withl-cysteine, 2-oxoglutarate and glutathione resulted in the formation of sulfate and thiosulfate, indicating that thiosulfate was formed by transsulfuration of 3-mercaptopyruvate and finally metabolized to sulfate.  相似文献   

20.
Cytosolic serine hydroxymethyltransferase has been shown previously to exhibit both broad substrate and reaction specificity. In addition to cleaving many different 3-hydroxyamino acids to glycine and an aldehyde, the enzyme also catalyzes with several amino acid substrate analogs decarboxylation, transamination, and racemization reactions. To elucidate the relationship of the structure of the substrate to reaction specificity, the interaction of both amino acid and folate substrates and substrate analogs with the enzyme has been studied by three different methods. These methods include investigating the effects of substrates and substrate analogs on the thermal denaturation properties of the enzyme by differential scanning calorimetry, determining the rate of peptide hydrogen exchange with solvent protons, and measuring the optical activity of the active site pyridoxal phosphate. All three methods suggest that the enzyme exists as an equilibrium between "open" and "closed" forms. Amino acid substrates enter and leave the active site in the open form, but catalysis occurs in the closed form. The data suggest that the amino acid analogs that undergo alternate reactions, such as racemization and transamination, bind only to the open form of the enzyme and that the alternate reactions occur in the open form. Therefore, one role for forming the closed form of the enzyme is to block side reactions and confer reaction specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号