首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The integrity of the alpha-sarcin loop in 28 S ribosomal RNA is critical during protein synthesis. The toxins alpha-sarcin, ricin, Shiga toxin, and Shiga-like toxin inhibit protein synthesis in oocytes by attacking specific nucleotides within this loop (Ackerman, E.J., Saxena, S. K., and Ulbrich, N. (1988) J. Biol. Chem. 263, 17076-17083; Saxena, S.K., O'Brien, A.D., and Ackerman, E.J. (1989) J. Biol. Chem. 264, 596-601). We injected Xenopus oocytes with deoxyoligonucleotides complementary to the 17-nucleotide alpha-sarcin loop of Xenopus 28 S rRNA. Only injected oligonucleotides fully covering the alpha-sarcin loop or slightly beyond inhibited oocyte protein synthesis. Shorter alpha-sarcin domain deoxyoligonucleotides complementary to the alpha-sarcin and ricin sites but not spanning the entire loop were less effective inhibitors of protein synthesis. The alpha-sarcin domain oligonucleotides covering the entire loop were more effective inhibitors of protein synthesis than injected cycloheximide at equivalent concentrations. Control oligonucleotides complementary to nine other regions of Xenopus 28 S rRNA as well as universal M13 DNA sequencing primers had no effect on oocyte protein synthesis. Oligonucleotides complementary to the highly conserved alpha-sarcin domain therefore represent an alternative to catalytic toxins for causing cell death and may prove effective in immunotherapy.  相似文献   

2.
Antisense DNAs complementary against various sequences of the alpha-sarcin domain (C2646-G2674) of 23S rRNA from Escherichia coli were hybridized to naked 23S rRNA as well as to 70S ribosomes. Saturation levels of up to 0.4 per 70S ribosome were found, the identical fraction was susceptible to the attack of the RNase alpha-sarcin. The hybridization was specific as demonstrated with RNase H digestion, sequencing the resulting fragments and blockage of the action of alpha-sarcin. The RNase alpha-sarcin seems to approach its cleavage site from the 3' half of the loop of the alpha-sarcin domain. Hybridization is efficiently achieved at 37 degrees C and can extend at least into the 3' strand of the stem of the alpha-sarcin domain. However, the inhibition of alpha-sarcin activity is observed at 30 degrees C but not at 37 degrees C. For a significant inhibition of poly(Phe) synthesis the temperature had to be lowered to 25 degrees C. The results imply that the alpha-sarcin domain changes its conformation during protein synthesis and that the conformational changes may include a melting of the stem of the alpha-sarcin domain.  相似文献   

3.
Ribosomal RNA identity elements for ricin A-chain recognition and catalysis   总被引:7,自引:0,他引:7  
Ricin is a cytotoxic protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond between the base and the ribose at position A4324 in eukaryotic 28 S rRNA. The requirements for the recognition by ricin A-chain of this nucleotide and for the catalysis of cleavage were examined using a synthetic oligoribonucleotide that reproduces the sequence and the secondary structure of the RNA domain (a helical stem, a bulged nucleotide, and a 17-member single-stranded loop). The wild-type RNA (35mer) and a number of mutants were transcribed in vitro from synthetic DNA templates with phage T7 RNA polymerase. With the wild-type oligoribonucleotide the ricin A-chain catalyzed reaction has a Km of 13.55 microM and a Kcat of 0.023 min-1. Recognition and catalysis by ricin A-chain has an absolute requirement for A at the position that corresponds to 4324. The helical stem is also essential; however, the number of base-pairs can be reduced from the seven found in 28 S rRNA to three without loss of identity. The nature of these base-pairs can affect catalysis. A change of the second set from one canonical (G.C) to another (U.A) reduces sensitivity to ricin A-chain; whereas, a change of the third pair (U.A----G.C) produces supersensitivity. The bulged nucleotide does not contribute to identification. Hydrolysis is affected by altering the nucleotides in the universal sequence surrounding A4324 or by changing the position in the loop of the tetranucleotide GA(ricin)GA: all of these mutants have a null phenotype. If ribosomes are treated first with alpha-sarcin to cleave the phosphodiester bond at G4325 ricin can still catalyze depurination at A4324. This implies that cleavage by alpha-sarcin at the center of what has been presumed to be a 17 nucleotide single-stranded loop in 28 S rRNA produces ends that are constrained in some way. On the other hand, hydrolysis by alpha-sarcin of the corresponding position in the synthetic oligoribonucleotide prevents recognition by ricin A-chain. The results suggest that the loop has a complex structure, affected by ribosomal proteins, and this bears on the function in protein synthesis of the alpha-sarcin/ricin rRNA domain.  相似文献   

4.
alpha-Sarcin is a ribonuclease that cleaves the phosphodiester bond on the 3' side of G4325 in 28S rRNA; ricin A-chain is a RNA N-glycosidase that depurinates the 5' adjacent A4324. These single covalent modifications inactivate the ribosome. An oligoribonucleotide that reproduces the structure of the sarcin/ricin domain in 28S rRNA was synthesized and mutations were constructed in the 5' C and the 3' G that surround a GAGA tetrad that has the sites of toxin action. Covalent modification of the RNA by ricin, but not by alpha-sarcin, requires a Watson-Crick pair to shut off a putative GAGA tetraloop. Either the recognition elements for the two toxins are different despite their catalyzing covalent modification of adjacent nucleotides in 28S rRNA or there are transitions in the conformation of the alpha-sarcin/ricin domain in 28S rRNA and one conformer is recognized by alpha-sarcin and the other by ricin A-chain.  相似文献   

5.
A universal rule is found about nucleotide sequence complementarities between the regions 2653-2666 in the GTPase-binding site of 23S rRNA and 1064-1077 of 16S rRNA as well as between the region 1103-1107 of 16S rRNA and GUUCG (or GUUCA) of tRNAs. This rule holds for all species in the living kingdoms except for two protista mitochondrial rRNAs of Trypanosoma brucei and Plasmodium falciparum. We found that quite similar relationships for the two species hold under the assumption presented in the present paper. The complementarity between T-loop of tRNA and the region 1103-1107 of 16S rRNA suggests that the first interaction of a ribosome with aminoacyl-tRNAEF-TuGTP ternary complex or EF-GGDP complex could occur at the region 1103-1107 of 16S rRNA with the T-loop-D-loop contact region of the ternary complex or the domain IV-V bridge region of the EF-GGDP complex. The second interaction should occur between the A-site codon and the anticodon loop or between the anticodon stem/loop of A-site tRNA and the tip of domain IV of EF-G. The above stepwise interactions would facilitate the collision of the region 1064-1077 of 16S rRNA with the region around A2660 at the alpha-sarcin/ricin loop of 23S rRNA. In this way, the universal rule is capable of explaining how spectinomycin-binding region of 16S rRNA takes part in translocation, how GTPases such as EF-Tu and EF-G can be introduced into their binding site on the large subunit ribosome in proper orientation efficiently and also how driving forces for tRNA movement are produced in translocation and codon recognition. The analysis of T-loops of all tRNAs also presents an evolutionary trend from a random and seemingly primitive sequence, as defined to be Y type, to the most developed structure, such as either 5G7 or 5A7 types in the present definition.  相似文献   

6.
An oligoribonucleotide (35-mer) that mimics the alpha-sarcin and the ricin region of eukaryotic 28 S rRNA was transcribed in vitro from a synthetic template with T7 RNA polymerase and was used to test whether the specificity of the hydrolysis by the toxins was retained. alpha-Sarcin, at a low concentration, cleaved a single phosphodiester bond on the 3' side of a guanosine residue in the synthetic oligomer that corresponds to G-4325 in 28 S rRNA, the site of action of the toxin in intact ribosomes. At a high concentration of alpha-sarcin, the substrate (35-mer) was hydrolyzed after each of its purines. alpha-Sarcin was without an effect on a synthetic RNA (20-mer) that reproduces the near universal sequence of nucleotides in the loop, but lacks the stem, of the toxin's domain. Thus, the specificity of the attack of alpha-sarcin on a precise region of 28 S rRNA appears to be contingent on the sequence of the nucleotides and the structure of the domain. Ricin depurinated a nucleotide in the synthetic oligomer (35-mer), and in the presence of aniline the phosphoribose backbone was cleaved at a position that conforms to A-4324 in 28 S rRNA, the site of action of the toxin in vivo.  相似文献   

7.
8.
Alpha-sarcin is a ribosome-inactivating protein that has been well characterized in vitro, but little is known about its toxicity in living cells. We have analyzed the mechanism of internalization of alpha-sarcin into human rhabdomyosarcoma cells and the cellular events that result in the induction of cell death. No specific cell surface receptor for alpha-sarcin has been found. The toxin is internalized via endocytosis involving acidic endosomes and the Golgi, as deduced from the ATP requirement and the effects of NH4Cl, monensin and nigericin on its cytotoxicity. Specific cleavage of 28S rRNA in cultured rhabdomyosarcoma cells, associated with protein biosynthesis inhibition, has been detected. alpha-Sarcin kills rhabdomyosarcoma cells via apoptosis: incubation of cells with alpha-sarcin at a concentration below its IC50 induces internucleosomal genomic DNA fragmentation, reversion of membrane asymmetry, activation of caspase-3-like activity and cleavage of poly(ADP-ribose)polymerase. Apoptosis is not a general direct consequence of protein biosynthesis inhibition, as deduced from the comparative analysis of the effects of alpha-sarcin and cycloheximide; the latter does not induce apoptosis even at concentrations far beyond its IC50, where protein biosynthesis is null. Experiments with a catalytically inactive alpha-sarcin mutant, neither toxic nor apoptotic, reveal that induced apoptosis is directly related to the effects of catalytic activity of the toxin on the ribosomes. The caspase inhibitor z-VAD-fmk does not suppress protein synthesis inhibition by alpha-sarcin. Together, these data suggest that alpha-sarcin-induced caspase activation is a pathway downstream of the 28S rRNA catalytic cleavage and consequent protein biosynthesis inhibition.  相似文献   

9.
In order to map the rRNA environment of the acceptor end of tRNA in th e ribosome, hydroxyl radicals were generated in situ from Fe(II) attached via an EDTA linker to the 5' end of tRNA. Nucleotides in rRNA cleaved by the radicals were identified by primer extension, and assigned to the ribosomal A, P and E sites by standard criteria. In the A site, cleavages were found in the 2555-2573 region of 23S rRNA, around bases previously shown to be protected by A site tRNA, and in the alpha-sarcin loop, the site of interaction of elongation factors EF-Tu and EF-G. P site cleavages occurred in the 2250 loop, where a base pair is made with C74 of tRNA; and around the 2493 region in domain V. Interestingly, two clusters of nucleotides in 23S rRNA are accessible to both A site and P site tRNA probes. The first cluster is in the 1940-1965 region of domain IV, around the site of affinity labeling by the 3' end of tRNA, and the second cluster is around the bulged adenosine A2602, whose accessibility to chemical probes is enhanced by P site tRNA and decreased by A site tRNA. From the E site, cleavages occur in the 2390-2440 region, surrounding C2394, a base protected from dimethyl sulfate by E site tRNA, and in the phylogenetically variable stem at positions 1860/1880 of domain IV. Unexpectedly, no cleavages were detected in the central loop of domain V of 23S rRNA.  相似文献   

10.
The ribotoxins alpha-sarcin and ricin catalyse covalent modifications in adjacent nucleotides in 28S rRNA, yet the elements of nucleic acid structure that they recognize are not only different but incompatible. This suggests that this ribosomal domain (which in two dimensions is a seven-base-pair helical stem and a 17-member single-stranded loop) has alternate conformers. Since the domain is involved in binding of aminoacyl-tRNA and GTP hydrolysis, we propose that the switch between the two configurations, perhaps initiated by the binding of elongation factors, plays a role in translocation.  相似文献   

11.
The proximity of loop D of 5 S rRNA to two regions of 23 S rRNA, domain II involved in translocation and domain V involved in peptide bond formation, is known from previous cross-linking experiments. Here, we have used site-directed mutagenesis and chemical probing to further define these contacts and possible sites of communication between 5 S and 23 S rRNA. Three different mutants were constructed at position A960, a highly conserved nucleotide in domain II previously crosslinked to 5 S rRNA, and the mutant rRNAs were expressed from plasmids as homogeneous populations of ribosomes in Escherichia coli deficient in all seven chromosomal copies of the rRNA operon. Mutations A960U, A960G and, particularly, A960C caused structural rearrangements in the loop D of 5 S rRNA and in the peptidyltransferase region of domain V, as well as in the 960 loop itself. These observations support the proposal that loop D of 5 S rRNA participates in signal transmission between the ribosome centers responsible for peptide bond formation and translocation.  相似文献   

12.
The effects of ricin and alpha-sarcin separately or in combination on the conformation of rat liver ribosomes were investigated by measuring the relative accessibility of individual ribosomal proteins to N-ethylmaleimide after 80S ribosomes were treated with these toxins. By using a double-labelling technique in which ribosomes were incubated with the toxins and then treated with 3H-labelled or 14C-labelled N-ethylmaleimide, it was found that labelling of protein L14 was specifically reduced by treatment with ricin, and that of proteins L3 and L4 by treatment with alpha-sarcin, suggesting that the toxins alter the conformation of ribosomes in the vicinity of these proteins. When ribosomes were treated with both ricin and alpha-sarcin, the extent of labelling of protein L3 was reduced compared to that observed after treatment with alpha-sarcin alone. These results are discussed in relation to previous observations showing that these three proteins are neighbours in the 60S ribosomal subunit and probably play important roles in protein biosynthesis, and in the actions of ricin and alpha-sarcin on 28S rRNA.  相似文献   

13.
Inhibition of protein synthesis per se does not potentiate the stress-activated protein kinases (SAPKs; also known as cJun NH2-terminal kinases [JNKs]). The protein synthesis inhibitor anisomycin, however, is a potent activator of SAPKs/JNKs. The mechanism of this activation is unknown. We provide evidence that in order to activate SAPK/JNK1, anisomycin requires ribosomes that are translationally active at the time of contact with the drug, suggesting a ribosomal origin of the anisomycin-induced signaling to SAPK/JNK1. In support of this notion, we have found that aminohexose pyrimidine nucleoside antibiotics, which bind to the same region in the 28S rRNA that is the target site for anisomycin, are also potent activators of SAPK/JNK1. Binding of an antibiotic to the 28S rRNA interferes with the functioning of the molecule by altering the structural interactions of critical regions. We hypothesized, therefore, that such alterations in the 28S rRNA may act as recognition signals to activate SAPK/JNK1. To test this hypothesis, we made use of two ribotoxic enzymes, ricin A chain and alpha-sarcin, both of which catalyze sequence-specific RNA damage in the 28S rRNA. Consistent with our hypothesis, ricin A chain and alpha-sarcin were strong agonists of SAPK/JNK1 and of its activator SEK1/MKK4 and induced the expression of the immediate-early genes c-fos and c-jun. As in the case of anisomycin, ribosomes that were active at the time of exposure to ricin A chain or alpha-sarcin were able to initiate signal transduction from the damaged 28S rRNA to SAPK/JNK1 while inactive ribosomes were not.  相似文献   

14.
The ribonuclease activity of the cytotoxic protein alpha-sarcin has been characterized. When rat liver ribosomes or 60 S ribosomal subunits were the substrates, alpha-sarcin cleaved a single oligonucleotide of about 488 residues, the alpha-fragment, from the 3' end of 28 S rRNA. In contrast, 40 S ribosomal subunits were not affected by alpha-sarcin. The alpha-fragment was cleaved from 28 S rRNA in 80 S ribosomes when the concentration of alpha-sarcin was 3 x 10(-8) M and the toxin retained its specificity even when the concentration was 3 x 10(-5) M. The turnover number (kcat) for the reaction of alpha-sarcin with ribosomes was 55 min-1, establishing that the toxin acts catalytically. When total rRNA or 28 S rRNA was the substrate, alpha-sarcin caused extensive progressive digestion of the nucleic acids; however, no formation of the alpha-fragment occurred. The extent of the digestion of 28 S rRNA was related to the concentration of alpha-sarcin, but the amount of the toxin required was somewhat greater than that needed with ribosomes. Digestion of homopolynucleotides with alpha-sarcin indicated that the protein is specific for purines. When [32P]5 S rRNA was the substrate, alpha-sarcin cleaved on the 3' side of purines in both single- and double-stranded regions of the molecule. The results suggest that the unusual specificity of alpha-sarcin, in that it cleaves only one of more than 7000 phosphodiester bonds in the ribosome, is a property both of the cytotoxin and of the ribosome.  相似文献   

15.
We report the synthesis of a radioactive, photolabile oligodeoxyribonucleotide probe and its exploitation in identifying 50S ribosomal subunit components neighboring the alpha-sarcin loop. The probe is complementary to 23S rRNA nt 2653-2674. Photolysis of the complex formed between the probe and 50S subunits leads to site-specific probe photoincorporation into proteins L2, the most highly labeled protein, L1, L15, L16 and L27, labeled to intermediate extents, and L5, L9, L17 and L24, each labeled to a minor extent. Portions of each of these proteins thus lie within 23 A of nt U2653. These results lead us to conclude that the alpha-sarcin loop is located at the base of the L1 projection within the 50S subunit. Such placement, near the peptidyl transferase center, provides a rationale for the extreme sensitivity of ribosomal function to cleavage of the alpha-sarcin loop.  相似文献   

16.
Ricin is a cytotoxic protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond between the base and the ribose of the adenosine at position 4324 in eukaryotic 28 S rRNA. Ricin A-chain will also catalyze depurination in naked prokaryotic 16 S rRNA; the adenosine is at position 1014 in a GAGA tetraloop. The rRNA identity elements for recognition by ricin A-chain and for the catalysis of cleavage were examined using synthetic GAGA tetraloop oligoribonucleotides. The RNA designated wild-type, an oligoribonucleotide (19-mer) that approximates the structure of the ricin-sensitive site in 16 S rRNA, and a number of mutants were transcribed in vitro from synthetic DNA templates with phage T7 RNA polymerase. With the wild-type tetraloop oligoribonucleotide the ricin A-chain-catalyzed reaction has a Km of 5.7 microM and a Kcat of 0.01 min-1. The toxin alpha-sarcin, which cleaves the phosphodiester bond on the 3' side of G4325 in 28 S rRNA, does not recognize the tetraloop RNA, although alpha-sarcin does affect a larger synthetic oligoribonucleotide that has a 17-nucleotide loop with a GAGA sequence; thus, there is a clear divergence in the identity elements for the two toxins. Mutants were constructed with all of the possible transitions and transversions of each nucleotide in the GAGA tetraloop; none was recognized by ricin A-chain. Thus, there is an absolute requirement for the integrity of the GAGA sequence in the tetraloop. The helical stem of the tetraloop oligoribonucleotide can be reduced to three base-pairs, indeed, to two base-pairs if the temperature is decreased, without affecting recognition; the nature of these base-pairs does not influence recognition or catalysis by ricin A-chain. If the tetraloop is opened so as to form a GAGA-containing hexaloop, recognition by ricin A-chain is lost. This suggests that during the elongation cycle, a GAGA tetraloop either exists or is formed in the putative 17-member single-stranded region of the ricin domain in 28 S rRNA and this bears on the mechanism of protein synthesis.  相似文献   

17.
alpha-Sarcin is a cytotoxic protein that inactivates ribosomes by hydrolyzing a single phosphodiester bond on the 3' side of G-4325 in eukaryotic 28 S rRNA. We have examined the requirements for the recognition by alpha-sarcin of this domain using a synthetic oligoribonucleotide (35-mer) that reproduces the sequence and, we presume, the secondary structure (a stem, a bulged nucleotide, and a loop) at the site of modification. The wild type structure and a large number of variants were transcribed in vitro from synthetic DNA templates with phage T7 RNA polymerase. Recognition of the substrate is strongly favored by a G at the position that corresponds to 4325. There is an absolute requirement for a helical stem; however, it can be reduced from the 7 base pairs in the natural structure to 3 without loss of specificity. The nature of the base pairs in the stem modifies but does not abolish recognition; whereas, the bulged nucleotide does not contribute to identification. Cleavage is materially affected by altering the nucleotides in the universal sequence surrounding G-4325 and changing the position in the loop of the tetranucleotide GAG(sarcin)A leads to loss of recognition by the toxin. We propose that the alpha-sarcin domain RNA participates in elongation factor catalyzed binding of aminoacyl-tRNA and of translocation; that translocation is driven by transitions in the structure of the alpha-sarcin domain RNA initiated by the binding of the factors, or the hydrolysis of GTP, or both; and that to toxin inactivates the ribosomes by preventing this transition.  相似文献   

18.
alpha-Sarcin selectively cleaves a single phosphodiester bond in a universally conserved sequence of the major rRNA, that inactivates the ribosome. The elucidation of the three-dimensional solution structure of this 150 residue enzyme is a crucial step towards understanding alpha-sarcin's conformational stability, ribonucleolytic activity, and its exceptionally high level of specificity. Here, the solution structure has been determined on the basis of 2658 conformationally relevant distances restraints (including stereoespecific assignments) and 119 torsional angular restraints, by nuclear magnetic resonance spectroscopy methods. A total of 60 converged structures have been computed using the program DYANA. The 47 best DYANA structures, following restrained energy minimization by GROMOS, represent the solution structure of alpha-sarcin. The resulting average pairwise root-mean-square-deviation is 0.86 A for backbone atoms and 1.47 A for all heavy atoms. When the more variable regions are excluded from the analysis, the pairwise root-mean-square deviation drops to 0.50 A and 1.00 A, for backbone and heavy atoms, respectively. The alpha-sarcin structure is similar to that reported for restrictocin, although some differences are clearly evident, especially in the loop regions. The average rmsd between the structurally aligned backbones of the 47 final alpha-sarcin structures and the crystal structure of restrictocin is 1.46 A. On the basis of a docking model constructed with alpha-sarcin solution structure and the crystal structure of a 29-nt RNA containing the sarcin/ricin domain, the regions in the protein that could interact specifically with the substrate have been identified. The structural elements that account for the specificity of RNA recognition are located in two separate regions of the protein. One is composed by residues 51 to 55 and loop 5, and the other region, located more than 11 A away in the structure, is the positively charged segment formed by residues 110 to 114.  相似文献   

19.
Base substitutions have been introduced into the highly conserved sequences of loops D and E within domain 3 of Xenopus laevis oocyte 5 S rRNA. The effects of these mutations on the solution structure of this 5 S rRNA have been studied by means of probing with nucleases, and with chemical reagents under native and semi-denaturing conditions. The data obtained with these mutants support the graphic model of Xenopus oocyte 5 S rRNA proposed by Westhof et al. In particular, our results rule out the existence of long-range base-pairing interactions between loop C and either loop D or loop E. The data also confirm that loops D and E in the wild-type 5 S RNA adopt unusual secondary structures and illustrate the importance of nucleotide sequence in the formation of intrinsic local loop conformations via non-canonical base-pairs and specific base-phosphate contacts. Consistent with this conclusion is our observation that the domain 3 fragment of Xenopus oocyte 5 S rRNA adopts the same conformation as the corresponding region in the full-length 5 S rRNA.  相似文献   

20.
The conformation of Escherichia coli 5 S rRNA was investigated using chemical and enzymatic probes. The four bases were monitored at one of their Watson-Crick positions with dimethylsulfate (at C(N-3) and A(N-1], with a carbodiimide derivative (at G(N-1) and U(N-3] and with kethoxal (at G(N-1, N-2]. Position N-7 of purine was probed with diethylpyrocarbonate (at A(N-7] and dimethylsulfate (at G(N-7]. Double-stranded or stacked regions were tested with RNase V1 and unpaired guanine residues with RNase T1. We also used lead(II) that has a preferential affinity for interhelical and loop regions and a high sensitivity for flexible regions. Particular care was taken to use uniform conditions of salt, magnesium, pH and temperature for the different enzymatic chemical probes. Derived from these experimental data, a three dimensional model of the 5 S rRNA was built using computer modeling which integrates stereochemical constraints and phylogenetic data. The three domains of 5 S rRNA secondary structure fold into a Y-shaped structure that does not accommodate long-range tertiary interactions between domains. The three domains have distinct structural and dynamic features as revealed by the chemical reactivity and the lead(II)-induced hydrolysis: domain 2 (loop B/helix III/loop C) displays a rather weak structure and possesses dynamic properties while domain 3 (helix V/region E/helix IV/loop D) adopts a highly structured and overall helical conformation. Conserved nucleotides are not crucial for the tertiary folding but maintain an intrinsic structure in the loop regions, especially via non-canonical pairing (A.G, G.U, G.G, A.C, C.C), which can close the loops in a highly specific fashion. In particular, nucleotides in the large external loop C fold into an organized conformation leading to the formation of a five-membered loop motif. Finally, nucleotides at the hinge region of the Y-shape are involved in a precise array of hydrogen bonds based on a triple interaction between U14, G69 and G107 stabilizing the quasi-colinearity of helices II and V. The proposed tertiary model is consistent with the localization of the ribosomal protein binding sites and possesses strong analogy with the model proposed for Xenopus laevis 5 S rRNA, indicating that the Y-shape model can be generalized to all 5 S rRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号