首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Vasantha  L D Thompson 《Gene》1986,49(1):23-28
Subtilisin is synthesized as a preproenzyme in Bacillus subtilis. We fused that region of the subtilisin gene, (apr[BamP]), which encodes the signal sequence and pro region, to the mature gene sequence (spa) for a heterologous protein (staphylococcal protein A). B. subtilis cells harboring this gene fusion synthesized a fusion protein consisting of the signal and pro sequence of subtilisin fused to the protein A; the signal sequence was processed and a fusion protein (pro + protein A) was secreted into the growth medium.  相似文献   

2.
Effect of stage 0 sporulation mutations on subtilisin expression.   总被引:24,自引:20,他引:4       下载免费PDF全文
  相似文献   

3.
4.
5.
6.
Bacillus amyloliquefaciens DC-4, which produces a strongly fibrinolytic enzyme, was isolated from douchi, a traditional Chinese soybean-fermented food. A fibrinolytic enzyme (subtilisin DFE) was purified from the supernatant of B. amyloliquefaciens DC-4 culture broth and displayed thermophilic, hydrophilic and strong fibrinolytic activity. Subtilisin DFE was demonstrated to be homogeneous by SDS-PAGE and isoelectric focusing electrophoresis, and has molecular mass of 28000 Da and a pI of 8.0. The optimal reaction pH value and temperature were 9.0 and 48 degrees C, respectively. Subtilisin DFE not only hydrolyzed fibrin but also several synthetic substrates, particularly Suc-Ala-Ala-Pro-Phe-pNA, and phenylmethylsulfony fluoride can completely inhibit its fibrinolytic activity. These results indicated that subtilisin DFE is a subtilisin-family serine protease, similar to nattokinase from Bacillus natto. The first 24 amino acid residues of the N-terminal sequence of subtilisin DFE were AQSVPYGVSQIKAPALHSQGFTGS, which is identical to that of subtilisin K-54, and different from that of NK and CK. Results from subtilisin DFE gene sequence analysis showed that subtilisin DFE is a novel fibrinolytic enzyme.  相似文献   

7.
The spoIID gene, which is involved in Bacillus subtilis sporulation, was fused to the beta-galactosidase gene, lacZ, of Escherichia coli so that the expression of beta-galactosidase would be under the control of the spoIID locus. When the fused product was inserted into the B. subtilis chromosome, production of beta-galactosidase indicated that the spoIID gene was expressed 1.5 h after the start of sporulation. When the spoIID::lacZ fusion was inserted into the chromosome of sporulation mutants, all strains carrying spo0 lesions and those with mutations in spoIIA, spoIIE and spoIIG loci failed to make beta-galactosidase. The proposed provisional order of expression of operons governing stage II is spoIIA----[spoIIG, spoIIE]----[spoIID, spoIIB, spoIIF].  相似文献   

8.
The use of glucose starvation to uncouple the production of recombinant beta-galactosidase from cell growth in Escherichia coli was investigated. A lacZ operon fusion to the carbon starvation-inducible cst-1 locus was used to control beta-galactosidase synthesis. beta-Galactosidase induction was observed only under aerobic starvation conditions, and its expression continued for 6 h following the onset of glucose starvation. The cessation of beta-galactosidase expression closely correlated with the exhaustion of acetate, an overflow metabolite of glucose, from the culture medium. Our results suggest the primary role of acetate in cst-1-controlled protein expression is that of an energy source. Using this information, we metered acetate to a glucose-starved culture and produced a metabolically sluggish state, where growth was limited to a low linear rate and production of recombiant beta-galactosidase occurred continuously throughout the experiment. The cst-1 controlled beta-galactosidase synthesis was also induced at low dilution rates in a glucose-limited chemostat, suggesting possible applications to high-density cell systems such as glucose-limited recycle reactors. This work demonstrates that by using an appropriate promoter system and nutrient limitation, growth can be restrained while recombinant protein production is induced and maintained.  相似文献   

9.
Cloning and expression of subtilisin amylosacchariticus gene   总被引:7,自引:0,他引:7  
The gene encoding subtilisin Amylosacchariticus from Bacillus subtilis var. amylosacchariticus was isolated and the entire nucleotide sequence of the coding sequence was determined. The deduced amino acid sequence revealed an N-terminal signal peptide and pro-peptide of 106 residues followed by the mature protein comprising 275 residues. There were discrepancies in 10 amino acids between the sequence elucidated from the nucleotide sequence and the published protein sequence (Kurihara et al. (1972) J. Biol. Chem. 247, 5619-5631). The nucleotide sequence was highly homologous to that of subtilisin E gene from B. subtilis 168, with discrepancies at 12 nucleotides out of 1,426 nucleotides we sequenced. Ten of them were found in mature subtilisin coding sequence, which resulted in two amino acid changes and another one was in the putative promoter region between two genes. The productivity of subtilisin in culture broth of B. subtilis var. amylosacchariticus was much higher than that of B. subtilis 168. The enzyme gene was inserted in a shuttle vector pHY300PLK, with which B. subtilis ISW1214 was transformed. The proteolytic activity found in the culture broth of the transformed bacterium was 20- and 4-fold higher than those of the host strain and B. subtilis var. amylosacchariticus, respectively. Subtilisin Amylosacchariticus was easily purified to a crystalline form from culture filtrate of cloned B. subtilis, after a single step of chromatography on CM-cellulose.  相似文献   

10.
Cultures using nitrate as the terminal electron acceptor were conducted in Schaeffer's medium to evaluate the growth performance and metabolic profiles of Bacillus subtilis, and its potential to express the aprE (subtilisin) gene under anoxic conditions. Nitrate was converted to ammonia through nitrite reduction; and different product profiles were observed during the growth phase when nitrate was added at various concentrations (4-24 mM) to Schaeffer's medium containing glucose (4 g l(-1)). If nitrate was not limiting, then acetic acid and acetoin were accumulated, suggesting a limitation of reduced cofactors but, if nitrate became limiting, then lactic acid and butanediol were accumulated, suggesting an excess of reduced cofactors. Due to a strong lysis at the onset of the end of the growth phase, sporulation frequency and aprE expression were negligible in anaerobic batch cultures. Fed-batch fermentation allowed the development of a stationary phase through a continuous supply of glucose and nitrate. In this case, sporulation frequency was almost null, but interestingly aprE expression was similar to that found in aerobic cultures.  相似文献   

11.
12.
13.
14.
Summary The influence of complex compounds on the growth of a recombinant strain ofEscherichia coli containing the gene encoding glyceraldehyde 3-phosphate dehydrogenase, as well as the production of this enzyme have been studied. Batchwise cultures led to an accumulation of acetate, which was not utilized in a yeast extract-free medium. After glucose exhaustion, growth stopped and enzyme activity decreased. Whereas yeast extract allowed acetate assimilation and growth, peptone stabilized the enzymatic activity. The addition of both compounds resulted in optimal performances for enzyme production.  相似文献   

15.
16.
In response to nitrogen starvation, diploid cells of the budding yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. This dimorphic transition is regulated by the Galpha protein GPA2, by RAS2, and by elements of the pheromone-responsive MAP kinase cascade, yet the mechanisms by which nitrogen starvation is sensed remain unclear. We have found that MEP2, a high affinity ammonium permease, is required for pseudohyphal differentiation in response to ammonium limitation. In contrast, MEP1 and MEP3, which are lower affinity ammonium permeases, are not required for filamentous growth. Deltamep2 mutant strains had no defects in growth rates or ammonium uptake, even at limiting ammonium concentrations. The pseudohyphal defect of Deltamep2/Deltamep2 strains was suppressed by dominant active GPA2 or RAS2 mutations and by addition of exogenous cAMP, but was not suppressed by activated alleles of the MAP kinase pathway. Analysis of MEP1/MEP2 hybrid proteins identified a small intracellular loop of MEP2 involved in the pseudohyphal regulatory function. In addition, mutations in GLN3, URE2 and NPR1, which abrogate MEP2 expression or stability, also conferred pseudohyphal growth defects. We propose that MEP2 is an ammonium sensor, generating a signal to regulate filamentous growth in response to ammonium starvation.  相似文献   

17.
PER.C6(R) cell growth, metabolism, and adenovirus production were studied in head-to-head comparisons in stirred bioreactors under different pH conditions. Cell growth rate was found to be similar in the pH range of 7.1-7.6, while a long lag phase and a slower growth rate were observed at pH 6.8. The specific consumption rates of glucose and glutamine decreased rapidly over time during batch cell growth, as did the specific lactate and ammonium production rates. Cell metabolism in both infected and uninfected cultures was very sensitive to culture pH, resulting in dramatic differences in glucose/glutamine consumption and lactate/ammonium production under different pH conditions. It appeared that glucose metabolism was suppressed at low pH but the efficiency of energy production from glucose was enhanced. Adenovirus infection resulted in profound changes in cell growth and metabolism. Cell growth was largely arrested under all pH conditions, while glucose consumption and lactate production were elevated post virus infection. Virus infection induced a reduction in glutamine consumption at low pH but an increase at high pH. The optimal pH for adenovirus production was found to be 7.3 under the experimental conditions used in the study. Deviations from this optimum resulted in significant reductions of virus productivity. The results indicate that culture pH is a very critical process parameter in PER.C6(R) cell culture and adenovirus production.  相似文献   

18.
Postmetamorphic growth and metabolism measurements were obtained on two cohorts of laboratory-reared Diadema antillarum. The cohorts grew linearly from less than 1 mm to over 43 mm. Daily growth averaged 0.097 and 0.11 mm d-1, respectively, for the two cohorts, and was found to differ significantly. Urchin metabolism was examined by a series of simultaneous measurements of oxygen consumption and ammonium excretion over 16 days on starved juveniles ranging 16.5 to 18.3 mm. Metabolic activity under conditions of starvation was used as a test of the viability of urchins reared in the laboratory with cultured food resources. Catabolic activity differed from the first week of starvation compared to the second. Metabolic response included: (1) a 2.2-fold increase in oxygen consumption rate; (2) 50% decline in ammonium excretion rate; and (3) a 5.1-fold increase in oxygen to nitrogen ratio. These measurements are consistent with a shift from almost pure protein catabolism during the first seven days of starvation to a lipid : protein catabolic ratio of 1 : 1 after the first week. Growth and metabolism experiments of this type are seen as a first step towards optimizing laboratory culture techniques of this species.  相似文献   

19.
20.
The role of bacilli in cocoa fermentation is not well known. Their potential of production of pectinolytic enzymes during this process was evaluated. Bacillus growth was monitored and pectinolytic strains were screened for their use of pectin as sole carbon source. Effects of cocoa fermentation parameters susceptible to influence on enzyme production were analysed. Among 98 strains isolated, 90 were positive for pectin degradation and 80% of them presented detectable pectinolytic activities in submerged fermentation. Forty-eight strains produced polygalacturonase (PG), 47 yielded pectin lyase (PL) and 23 strains produced both enzymes. Bacilli growth was not significantly affected during fermentation. PL production was favoured by galactose, lactose, glucose as sugars, and arginine, glutamine, cysteine and ammonium sulphate as nitrogen compounds. Pectin at low concentration (0.05%) and iron stimulated PL production. It was strongly repressed by galacturonic acid (1%), and negatively affected by nitrogen starvation, zinc and temperatures above 45°C. PL yield was very weak below pH 4.0 and in anaerobic conditions. PG production was weakened by sucrose and cation depletion. It was increased slightly by cysteine, ammonium nitrate and nitrogen starvation and significantly above 40°C. PG synthesis was not affected by acidic pH (3.0–6.0) or oxygen availability. As fermentation products, lactate and acetate lowered the production of both enzymes while ethanol had no effect. The high proportion of pectinolytic producers among the strains studied and analysis of factors influencing pectinolytic enzymes production, suggest that Bacillus sp. is liable to produce at least one enzyme during cocoa fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号