首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
人工湿地与环境卫生安全   总被引:3,自引:0,他引:3  
徐敏  宋志文  杨光  昌晶  吴蕾  闫逊 《生态学杂志》2007,26(11):1873-1877
人工湿地是国内外应用较为广泛的一种污水处理技术。近年来,人工湿地的环境卫生安全问题越来越受到人们的关注。人工湿地中病原微生物的去除或失活受到诸多因素的影响,其过程和机制与传统的二级污水处理工艺有较大区别,选择适宜的指示微生物和病原微生物并研究其行为是进行人工湿地环境卫生安全评价的关键。本文论述了病原微生物在人工湿地中的归宿以及人工湿地可能对环境卫生安全造成的影响,综述了国内外的研究现状,指出了该方面研究的必要性和迫切性。  相似文献   

2.
人工湿地对氮、磷的去除效率与动态特征   总被引:27,自引:1,他引:27  
1999年1月~2003年12月对荣成人工湿地污水处理系统处理效果以及氮、磷去除效果的动态变化特征进行分析。结果表明,人工湿地对SS、COD、BOD均有很好的去除效果,出水浓度分别为27·8±6·7、91·0±13·7和23·8±4·6mg·L-1,去除率分别为71·8±8·4%、62·2±10·1%和70·4±9·6%。大肠菌群去除率为99·7%。对NH4+-N和TP去除效果较差,出水浓度分别为11·3±2·6和2·00±0·28mg·L-1,去除率分别为40·6±15·3%和29·6±12·8%。NH4+-N去除效果和季节变化有关,每年7~9月去除效果最佳,1~3月效果最差,去除率分别为50·7±12·4%和23·0±11·6%。TP的去除效果季节性变化不如NH4+-N明显。NH4+-N年平均去除率2001~2003年逐年增加。TP年平均去除率在2001和2002年基本相同,2003年有所降低。  相似文献   

3.
人工湿地污水处理系统研究及性能改进分析   总被引:106,自引:3,他引:106  
人工湿地污水处理系统是有效的污水处理与水资源再用相结合的方法,与传统的污水处理法相比具有基建、运行费用低,操作与维护简单等优点。该系统已被广泛应用于生活污水的处理,并通过工艺创新有向工业污水、农业废水等特殊污水处理方向发展的趋势。本文总结了人工湿地系统的研究现状,预测其研究与应用发展的趋势,探讨不同类型的污水在人工湿地系统中的净化过程,分析影响人工湿地污水处理性能的因素及技术性能改进的一些措施,并探讨人工湿地污水处理系统的应用前景。  相似文献   

4.
六价铬对薏米人工湿地微生物群落数量的影响   总被引:1,自引:0,他引:1  
通过桶栽构筑微型模拟垂直流薏米人工湿地(CAW),以1/2 Hoaglands营养液为营养源,在营养液中添加不同浓度的Cr6+(0,5,20,40,60mg/L,以K2Cr2O7配置),各浓度处理均以不种植薏米湿地(NPW)为对照,以研究铬(Cr6+)对薏米人工湿地基质真菌、细菌及放线菌群落结构数量的影响。结果表明:(1)真菌、细菌、放线菌的数量在薏米人工湿地(CAW)中明显多于无植物对照处理(NPW);(2)中低浓度(5、20mg/L)Cr6+对CAW真菌,对NPW细菌、放线菌数量有促进作用,薏米人工湿地微生物对低中浓度的Cr6+胁迫有一定的耐受能力。  相似文献   

5.
模拟人工湿地处理污水的试验研究   总被引:33,自引:3,他引:33  
运用自行设计的人工湿地模拟装置处理人工污水,研究了污水在系统中的净化动态和最佳停留时间,并初步探讨了pH、Eh和气温对净化效率的影响。试验结果表明,有树系统5天内的净化率分别为:BOD_594.8%,总氮93.0%,总磷95.0%,氨氮99.5%。当Pb、Cd浓度分别在2500mg/L和250mg/L以内时,系统对Pb、Cd的净化率为99.9%以上,并可在3小时内基本完成。即使在“土壤”含Pb量达2.86g/kg和含Cd量达0.29g/kg的情况下,系统对Pb、Cd的净化率仍可达96.2—98.5%。  相似文献   

6.
人工湿地污水处理的应用现状及前景展望   总被引:8,自引:0,他引:8  
杨琼  陈章和 《生态科学》2002,21(4):357-360
本文分析了人工湿地系统在污水处理中的作用,叙述了人工湿地在发展中国家的应用现状及所取得的效果。人工湿地的特点适合我国国情,特别适合广大农村、中小城市的污水处理,在我国具有极其广阔的应用前景。对湿地用于污水处理方面的不足,如缺乏污水对植物影响的研究(特别是对乡土植物的研究)、缺乏对重要工艺的理解、人工湿地占地面积大等也进行了分析。  相似文献   

7.
为了寻找合适的湿地堵塞监测指标,文章通过运行4组湿地装置来模拟水平潜流人工湿地堵塞的过程,并研究人工湿地中微生物群落在湿地堵塞初期的响应。在人工湿地反应器运行过程中,定期监测基质过滤速率与人工湿地处理性能,包括化学需氧量(COD)、总氮(TN)和总磷(TP)去除效率,同时应用高通量测序技术测定并分析湿地反应器中微生物群落结构组成与多样性。结果表明:随着堵塞的形成,在4组人工湿地中,基质过滤速率和TP的去除效率持续下降,而COD和TN的去除效率分别为50%—85%和10%—20%; 16S rDNA测序结果表明堵塞会降低细菌群落的丰富度和多样性;人工湿地系统中的优势菌门主要是变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和绿弯菌门(Chloroflexi)等,且当湿地进入堵塞初期后,变形菌门丰度明显增加,具体表现为其门下的反硝化细菌属(Thauera、Zoogloea和Rhizobium)丰度显著增加,此外厚壁菌门和绿弯菌门的有机物降解菌属(Clostridium sensu stricto、Gracilibacter和Levilinea)的丰度也明显增加,这...  相似文献   

8.
基于遥感和GIS技术,分析1986~2005年三江平原自然湿地(湖泊、河流、沼泽湿地)与人工湿地(水田)的双向演替过程,统计分析自然地理环境背景(土壤类型、海拔高度、坡度和地貌类型)对此过程的影响。研究结果表明,1986~2005年间三江平原湿地双向演替过程以沼泽湿地与水田之间的相互转化为主。1986~1995年、1995~2000年和2000~2005年三时段内沼泽湿地转化为水田的面积占同期沼泽湿地转出总面积的比例分别为7.61%、37.99%和28.81%,相反,水田转化为沼泽湿地的面积占同期水田转出总面积的4.83%、13.69%和4.84%。三江平原发生沼泽湿地与水田双向演替过程的主要自然地理环境背景为土壤类型为草甸土和沼泽土,海拔高度为0~100 m,坡度为0~1°,地貌类型为低河漫滩、高河漫滩、洼地和一级阶地。  相似文献   

9.
人工湿地中降解有机污染物细菌的分离筛选   总被引:6,自引:1,他引:6  
采用平板划线法从人工湿地污水处理系统底泥和污水中分离出 2 3株细菌 ,在实验室条件下检测了这些细菌对灭菌污水和自然污水CODcr的去除效果 ,结果表明其中 8株细菌 (DN -4、DN -5、DN- 6、DN -10、DN -11、DN -12、DN- 13、WS- 5 )对灭菌污水和自然污水的CODcr均有较高的去除率 ,胞外酶检测表明该 8株细菌均能产生淀粉酶和接触酶 ,这些细菌具有潜在的应用价值。  相似文献   

10.
三江平原湿地生态系统P、K分布特征及季节动态研究   总被引:48,自引:4,他引:48  
对三江平原毛果苔草,狭叶甜茅(Carex lasixarpa-Glyeria spiculosa)湿地和小叶章(Deyeuxia angusti,folia)湿地的值物,土壤和地表积水进行P,K含量测定,运用一元非线性回归分析对P,K元素含量季节动态特征进行了探讨,结果表明,不同种类的湿地植物,同种植物的不同器官其P,K含量存在的差异,但部特点是K含量高于P含量,说明湿地植物具有富集K的特性,两类湿地土壤P,K全量,速效果的剖面分布特征也不同,名层土壤全K含量均高于全P含量,植物,土壤和地表积水中P,K含量均有明的季节动态变化,一元非线性回归模拟均得到较理想的模拟模型,相关系数大多在0.9以上,F检验较显著。  相似文献   

11.
Excess P in surface waters in Quebec is the primary cause of water quality deterioration and the majority of it is coming from agricultural land as non-point source pollution. The objective of this study was to compare how two substrates, a sandy clay loam and a sand soil, influenced P retention in a surface-flow constructed wetland (CW). A secondary objective was to determine if the hydraulic residence time of the wetland differed between soil types. Measurements were taken at a pilot-scale CW site between July 5 and October 1, 2007. Three cylindrical tank replicates filled with sandy clay loam soil, and three with a sandy soil were planted with cattails (Typha latifolia L.) and reed canary grass (Phalaris arundinaceae L.). The tanks were flooded continuously with an artificial agricultural runoff solution containing 0.3 mg L?1 dissolved reactive P. The six treatment tanks retained 0.9–1.6 g P m?2, which corresponded to an average removal efficiency of 41%; there was no significant difference in the P retention by the two soil types. A bromide tracer test revealed a mean hydraulic retention time of 2.2 days for all tanks; however, the active volume of the sand tanks was greater. This investigation suggests that a sandy soil may be less prone to reducing conditions in a surface-flow CW and therefore maintain its role as a P sink for longer than the sandy clay loam.  相似文献   

12.
Decomposition of senesced culm material of two bulrush species was studied in a surface-flow ammonia-dominated treatment wetland in southern California. Decomposition of the submerged culm material during summer months was relatively rapid (k = 0.037 day−1), but slowed under extended submergence (up to 245 days) and during fall and spring sampling periods (k = 0.009–0.014 day−1). Stepwise regression of seasonal data indicated that final water temperature and abundance of the culm-mining midge, Glyptotendipes, were significantly associated with culm decomposition. Glyptotendipes abundance, in turn, was correlated with water quality parameters such as conductivity and dissolved oxygen and ammonia concentrations. No differences were detected in decomposition rates between the bulrush species, Schoenoplectus californicus and Schoenoplectus acutus.  相似文献   

13.
《Ecological Engineering》2007,29(3):287-293
An attempt was made to investigate the removal of high nutrient contents from polluted water. This study focused on the comparisons between nitrogen and phosphorus removal rates by area-based calculation and biomass-based calculation using various kinds of aquatic plants (18 emergent and 3 floating plants). Results showed that all floating plants performed maximum nutrient removal rates based on plant weight calculation while most emergent plants performed maximum nutrient removal rates based on planted area calculation. The reason is that the weights of rooted mass by emergent plants are heavier than their shoots, resulting to low nutrient removal efficiencies in terms of their total weight. The study suggests that the planted area and the plant's geometries (such as roots and shoots) should be considered for the effective design in aquatic plant treatment systems.  相似文献   

14.
In this study, bacterial community structure in a horizontal subsurface flow constructed wetland (HSF-CW) planted with Phragmites australis was investigated using the 16S rRNA cloning–sequencing technique. Two layer depths were considered: the rhizosphere zone (RH) and the deep-layer zone (DL) in different sampling periods. Bacteria-specific primers 008F and 1492R were used to amplify the 16S rRNA genes and construct six clone libraries. A total of 1,284 individual sequences were used to assess the HSF-CW diversity. Phylogenetic analysis of RH and DL clone libraries shows that 41.57 and 42.17 % of the 16S rRNA sequences are affiliated with the Proteobacteria in the RH and the DL, respectively. The remaining major phylogenetic groups are Bacteroidetes, Planctomycetes, and Chloroflexi with 11.78, 9.36, and 7.6 %, respectively, in the RH and 11.38, 6.48, and 7.65 % in the DL, respectively. Minor divisions such as Verrucomicrobia, TM7, Nitrospira, and Gemmatimonadetes represented <6 % of the total sequences, while 14.2 % were unidentified Bacteria. Among the Proteobacteria, the Alphaproteobacteria subclass is represented in both locations, while the Deltaproteobacteria and Gammaproteobacteria subclasses were predominant in the RH and the DL, respectively. Results suggest that Archaea and Bacteria in the HSF-CW are the essential actors in the nitrogen cycle and that the established microbial community is efficient in nitrogen removal from wastewater.  相似文献   

15.
Seasonal water-table fluctuations in wetlands can result in flooded and drained conditions in the surface soil. In constructed wetlands water level drawdown and soil drainage are used in management to consolidate detrital materials, accelerate soil build up, and provide easy access for other management operations. A greenhouse study was conducted using intact peat soil cores to evaluate the changes in bioavailable P and other fractions following draining and reflooding. Measurements of floodwater dissolved reactive P (DRP) indicated that draining and soil exposure could result in large P flux to the overlying water column. Phosphorus flux in soils drained for 6 weeks was 10-fold higher (334 mg P m−2 day−1) than in soils drained for 3 weeks (33 mg P m−2 day−1). Soil exposure also resulted in an increase in bioavailable inorganic P (estimated by KCl extraction) at the expense of labile organic P pool. The KCl-P pool, which was initially less than 2% of total P (TP), increased to 3% and 13% of TP after 3 and 6 weeks draining, respectively. Results suggest that various soil P fractions, particularly those in newly accreted materials, were highly unstable and could be released in a more available form when newly accreted soils undergo drying. Water level drawdown and reflooding could result in significant P release, a possible stimulation of algal blooms and other water quality problems. Therefore, soil characteristics and chemistry and their impact on water quality should be a major consideration when one adopts the flood-drain technique in wetland management.  相似文献   

16.
17.
18.
A free water surface wetland was built in 2002 to treat wastewater from a tool factory containing metals (Cr, Ni, Zn and Fe), nutrients and organic matter. Until 2006, the last reported period, the wetland retained metals and stored them primarily in the bottom sediment and in the biomass of macrophytes secondarily. The aim of this work was to study metal retention and distribution in the sediment of a constructed wetland for industrial wastewater treatment. Total concentrations and fractions (exchangeable, carbonate-bound, Fe-Mn oxides-bound, organic matter-bound and residual) of metals in sediment were analyzed in this treatment wetland, in order to estimate the fate of metals over time. Metal concentrations were significantly higher in the inlet than in the outlet sediment; concentrations in the latter remained without significant differences throughout the testing period. Metal concentrations and redox potential decreased with depth within the sediment. The lowest metal concentrations and pH and the highest redox values were attained in spring, in agreement with the period of maximum macrophyte growth. Ni and Zn were mainly stored associated with the carbonate fraction; Cr was mainly associated with the Fe-Mn oxides fraction, while Fe was mainly associated with the residual fraction, probably as pyrite. The incoming wastewater composition containing high pH, carbonate, calcium and Fe concentrations favored the observed association in the surface sediment. It would be expected that sediment will continue retaining metals in fractions that will not release them into the water while the chemical and environmental conditions remain unchanged.  相似文献   

19.
20.
Constructed wetlands are very popular in terms of wastewater treatment today. Formation of redox potential gradients inside such a system strongly influences the wastewater-treatment efficiency. Individual oxidation forms of sulfur, and dissolved and precipitated manganese forms were determined in the vegetation bed of the constructed wetland. The aim of the speciation analysis was to contribute to the characterization of its redox properties. Sulfur was mostly oxidized at the inflow. The concentration of sulfates at the inflow varied from 25 to 55 mg/l, while concentration of sulfides was always lower than 6.0 mg/l and mostly even lower than 1.0 mg/l. However, sulfates were reduced during the pretreatment and the wastewater flow through the vegetation bed. The concentration of total manganese varied from 0.2 to 0.8 mg/l. Approximately 60% of Mn was precipitated at the inflow. The content of precipitated Mn forms declined to ca. 40-50% at the inflow zone, this content was almost constant across the vegetation bed to the outflow when water was sampled from 60-cm depth. However, the content of precipitated Mn forms increased to ca. 74% for samples from 20-cm depth. With respect to the aeration of the system, manganese can be precipitated as MnO2 in these samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号