首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
目的探讨苯并[a]芘(B(a)P)对小鼠肝脏和肾脏脂质过氧化及抗氧化能力的影响。方法采用B(a)P口腔灌胃连续染毒3 d后,取肝、肾组织作匀浆,采用TBA比色法测定鼠肝脏和肾脏内的丙二醛(MDA)的含量,钼酸铵比色法测定鼠肝脏和肾脏内的过氧化氢酶(CAT)的含量。结果肝中各剂量染毒组的MDA含量增加,其中5 mg/kg、10 mg/kg剂量组与油剂对照组比较差异有显著性(P〈0.05)。肾脏中各剂量染毒组的MDA含量均有所增加,其中10 mg/kg剂量组与对照组比较差异有显著性(P〈0.05)。肝脏中各剂量染毒组的CAT的含量低剂量增加高剂量减少,肾脏中各剂量染毒组的CAT的含量增加。结论B(a)P可引起MDA含量增加诱导小鼠肝肾的脂质过氧化损伤。  相似文献   

2.
外源精胺对小麦幼苗抗氧化酶活性的促进作用   总被引:14,自引:0,他引:14  
外源精胺(Spm)降低了离体小麦叶片衰老时MDA的含量,且降低程度与精胺的浓度成正比,0.2mmol/L的精胺提高了小麦幼苗体内的超氧化物歧化酶(SOD),过氧化氢酶(CAT),过氧化物酶(POD)及抗坏血酸过氧化物酶(ASP)的活性,体内及体外试验表明:精胺既可诱导SOD与POD的合成,又可直接作用于酶分子上以提高酶的活性;精胺对CAT合成仅能诱导,对已有酶活性无调节作用;精胺对ASP的合成无影响,却能促进已有酶的活性。  相似文献   

3.
研究苯并[a]芘(BaP)和镉(Cd2+)暴露对雄性食蚊鱼(Gambusia affinis)求偶行为的影响。设对照组和实验组,BaP暴露浓度为0、0.1、100μg/L;Cd2+暴露浓度为0、5、500 nmol/L;分别暴露6和8周。暴露实验结束后,观察雄鱼与雌鱼配对(1∶1)的求偶行为,并作录像记录分析。结果显示,雄鱼在0.1和100μg/L的BaP分别暴露6周后其对雌鱼的求偶行为开始明显降低,并随着暴露浓度的升高和时间的延长而呈现下降趋势;BaP高浓度组(100μg/L)暴露8周后对雄鱼有严重的致死效应。暴露在5和500 nmol/L的Cd2+至8周后雄鱼求偶行为明显降低;雌鱼暴露在低浓度BaP和Cd2+中其对雄鱼的求偶行为无明显影响(P>0.05);但分别在高浓度100μg/L BaP和500nmol/L Cd2+中暴露后,雄鱼对雌鱼的求偶行为显著减少。结果表明,BaP和Cd2+暴露均可降低雄性食蚊鱼的求偶行为。  相似文献   

4.
外源精胺对小麦幼苗抗氧化酶活性的促进作用   总被引:6,自引:0,他引:6  
外源精胺(Spm)降低了离体小麦叶片衰老时MDA的含量,且降低程度与精胺的浓度成正比。0.2mmol/L的精胺提高了小麦幼苗体内的超氧化物歧化酶(SOD),过氧化氢酶(CAT),过氧化物酶(POD)及抗坏血酸过氧化物酶(ASP)的活性。体内及体外试验表明精胺既可诱导SOD与POD的合成,又可直接作用于酶分子上以提高酶的活性;精胺对CAT合成仅能诱导,对已有酶活性无调节作用;精胺对ASP的合成无影响,却能促进已有酶的活性。  相似文献   

5.
在0.1%~5.0%NaCl浓度范围的培养基中培养极大螺旋藻(Spirulina maxima),发现NaCl浓度高于2.0%时螺旋藻生长受到明显抑制。培养7天后测定超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(ASA-POD)、过氧化氢酶(CAT)活性和丙二醛(MDA)含量。结果表明:在盐胁迫下,SOD酶活性升高;抗坏血酸过氧化物酶和过氧化氢酶活性在低盐胁迫下活性升高,高盐胁迫下抗坏血酸过氧化物酶活性迅速降低,过氧化物酶则完全失活;MDA含量先随盐胁迫程度增加而降低,后随盐胁迫的进一步增强恢复至对照水平。  相似文献   

6.
铝胁迫对不同小麦SOD、CAT、POD活性和MDA含量的影响   总被引:16,自引:0,他引:16  
方法:采用室内水培试验法,研究了不同浓度铝胁迫对耐性不同的几种基因型小麦叶片和根系内SOD、CAT、POD活性和MDA含量的影响。结果:表明铝胁迫条件下导致小麦叶片和根系的3种酶活性在一定范围内随胁迫强度的增加而上升,重度胁迫下会有所下降。这说明SOD、POD、CAT活性的提高与维持是植物耐铝胁迫的重要生理基础。另外,耐铝品种变化不显著,始终维持在比较稳定的活性水平,这可能与铝诱导的有机酸分泌有关,敏感性品种的酶活性在胁迫下会有所下降。而MDA含量在轻度胁迫下变化不明显,在重度胁迫下才会有明显变化,其含量的变化与小麦的耐铝性也有着密切的关系。  相似文献   

7.
NaCl胁迫对螺旋藻生长及抗氧化酶活性的影响   总被引:21,自引:0,他引:21  
在01%~5.0%NaCl浓度范围的培养基中培养极大螺旋藻(Spirulinamaxima),发现NaCl浓度高于2.0%时螺旋藻生长受到明显抑制。培养7天后测定超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(ASAPOD)、过氧化氢酶(CAT)活性和丙二醛(MDA)含量。结果表明:在盐胁迫下,SOD酶活性升高;抗坏血酸过氧化物酶和过氧化氢酶活性在低盐胁迫下活性升高,高盐胁迫下抗坏血酸过氧化物酶活性迅速降低,过氧化物酶则完全失活;MDA含量先随盐胁迫程度增加而降低,后随盐胁迫的进一步增强恢复至对照水平。  相似文献   

8.
7ppm Hg ++对玉米,小麦幼苗生长具一定的刺激作用,而10PPm Hg++则抑制幼苗生长。Hg++对两种作物根系生长有不同的生理效应,而对玉米、小麦根系过氧化物酶影响表现为谱带减少或活性减弱。  相似文献   

9.
汞对玉米、小麦幼苗生长及过氧化物酶同工酶的影响   总被引:3,自引:0,他引:3  
7ppm Hg~#对玉米、小麦幼苗生长具一定的刺激作用,而10ppm Hg~#则抑制幼苗生长。Hg~#对两种作物根系生长有不同的生理效应,而对玉米、小麦根系过氧化物酶影响表现为谱带减少或活性减弱。  相似文献   

10.
逆境下植物体内积累氨基丁酸(GABA)。盐胁迫严重影响玉米种子的萌发,而加入外源GABA可明显提高玉米种子的萌发率。外源GABA能迅速提高SOD、POD、和CAT这三种酶的活性。鉴于超氧化物歧化酶、过氧化氢酶和过氧化物酶是植物抗氧化保护系统中重要的组成部分,推测,盐胁迫条件下,GABA可通过提高保护酶系统活性而缓解盐胁迫对植物的伤害。  相似文献   

11.
Lead (Pb) is an environmental pollutant extremely toxic to plants and other living organisms including humans. To assess Pb phytotoxicity, experiments focusing on germination of wheat seeds were germinated in a solution containing Pb (NO(3))(2) (0.05; 0.1; 0.5; 1g/L) during 6 days. Lead accumulation in seedlings was positively correlated with the external concentrations, and negatively correlated with morphological parameters of plant growth. Lead increased lipid peroxidation, enhanced soluble protein concentrations and induced a significant accumulation of proline in roots. Esterase activity was enhanced in the presence of lead, whereas α-amylase activity was significantly inhibited. Antioxidant enzymes activities, such as, ascorbate peroxidase, peroxidase, superoxide dismutase, catalase and glutathione S-transferase were generally significantly increased in the presence of lead in a dose-dependent manner. The present results thus provide a model system to screen for natural compounds able to counteract the deleterious effects of lead.  相似文献   

12.
Summary Decreases in the concentrations of nitrogen, phosphorus, potassium, calcium and magnesium, in the shoots of wheat seedlings soon after the start of waterlogging were mainly attributed to an inhibition of ion uptake and transport by roots in the oxygen deficient soil. There was a small net accumulation of nitrogen, phosphorus and potassium by the aerial tissues, principally the tillers rather than the main shoot. By contrast, calcium and magnesium accumulated in both tillers and main shoot. With waterlogging, nitrogen, phosphorus and potassium were translocated from the older leaves to the younger growing leaves, and in the case of nitrogen this was associated with the onset of premature senescence. Calcium and magnesium were not translocated from the older leaves, the younger leaves acquiring these cations from the waterlogged soil. The promotion of leaf senescence by waterlogging was counteracted by applications of nitrate or ammonium to the soil surface, or by spraying the shoots with solutions of urea, but the beneficial effects on shoot growth were small.The role of mineral nutrition in relation to waterlogging damage to young cereal plants is discussed.  相似文献   

13.
Summary The effects of waterlogging on concentrations of gases and various solutes dissolved in the soil water were investigated in the laboratory, to determine whether the early disruption to the growth of wheat was most closely associated with depletion of dissolved oxygen, accumulation of toxins, or changes in concentrations of nutrient ions in the soil water. Waterlogging slowed shoot fresh weight accumulation, leaf extension and nodal root growth; it also caused death of the seminal root system and early senescence of the lower leaves. However, the shoot dry weight initially increased above that of the non-waterlogged controls, and thus was not a reliable indicator of the early restriction to plant growth and development. The symptoms of damage to shoots and roots were attributed to the fall in soil oxygen concentrations, rather than to any decrease in concentration of inorganic nutrients in the soil water, or to the accumulation of any other measured solutes to toxic concentrations.  相似文献   

14.
The effect of arsenate and selenate, either alone or in combination, on plant growth and nitrogen metabolism was studied in wheat seedlings. The root-shoot elongation and the biomass production were significantly decreased with increasing arsenate concentrations. Arsenate toxicity severely affected activities of different antioxidant scavenging enzymes and oxidative stress markers in the test seedlings. The activities of nitrate and nitrite reductase were also affected resulting in reduced nitrate and nitrite contents. Glutamine synthetase and glutamate synthase activities were also reduced, whereas the glutamate dehydrogenase activity was substantially increased resulting in an increased accumulation of ammonium contents in the test seedlings. Arsenate treatments also adversely affected the levels of total and soluble nitrogen contents and free amino acid contents. Combined application of arsenate with selenate in the test seedlings showed significant alterations in all parameters tested under the purview of arsenate treatment alone leading to better growth and nitrogen metabolism.  相似文献   

15.
A pre-treatment of 40 °Cprovided thermoprotection to wheat seedlings against 43 °C, which was otherwise a lethal temperature. Due to temperature pretreatment, the rate of protein synthesis at 45 °C increased in both plumules and radicles. The HPLC profile of plumule and radicle proteins of thermoprotection-acquired seedlings was different from the plumules and radicles of non-treated seedlings.  相似文献   

16.
The lipid peroxidation (as malondialdehyde, MDA), activities of superoxide dismutase (SOD) and catalase (CAT), and benzo[a]pyrene (BaP) metabolites were investigated in sera and erythrocytes of male Sprague-Dawley rats treated with BaP (20 mg per rat). MDA levels were significantly increased in sera (16.98+/-3.29 nmol/ml serum, P<0.05) 12 h after BaP treatment and persisted up to 96 h (13.80+/-1. 65 nmol/ml serum, P<0.05), but no significant change in NIDA levels was observed in erythrocytes. SOD and CAT activities were significantly increased in erythrocytes shortly after BaP exposure, and they were slightly decreased in sera, indicating an inverse correlation between lipid peroxidation and antioxidant enzyme activity. BaP and BaP-quinones (BaP-1,6-quinone and BaP-3,6-quinone) were measured in sera during the study period. A rapid increase of unmetabolized BaP was observed in sera (41.27+/-4.14 pmol/ml serum) 3 h after BaP treatment, reaching a peak at 6 h (48.56+/-4.62 pmol/ml serum) followed by a sharp decrease. Formation of the BaP-1, 6-quinone and BaP-3,6-quinone started in sera 3 h after BaP treatment, reached a peak at 24 h (7.23+/-1.02 pmol/ml serum) and 12 h (9.20+/-0.98 pmol/ml serum), respectively, and then decreased gradually. The time-dependent pattern of serum lipid peroxidation and the level of erythrocyte antioxidant enzymes were shown to be related to the concentrations of the BaP-quinone metabolites. These results suggest that BaP treatment, probably via the formation of BaP-quinones, oxidatively altered lipids and antioxidant enzymes in the blood, and might be associated with BaP-related vascular toxicity including carcinogenesis.  相似文献   

17.
The flag leaf of wheat was examined for changes in quantity and activity of ribulose-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39), in the proteolytic degradation of RuBPCase and other native proteins, and in the ultrastructure of the leaf cells during grain development. Proteolytic degradation of RuBPCase at pH 4.8 increased until 8–10 d after anthesis, then declined, and increased again 16–18 d after anthesis. The second peak coincided with the onset of a preferential loss of immunologically recognizable RuBPCase. The specific activity and number of active sites per molecule of RuBPCase did not change during senescence. Examination of ultrastructure with the electron microscope showed little change in the appearance of the mitochondria as the flag leaf aged. Prominent cristae were still evident 35 d after anthesis. In contrast, the chloroplasts showed a progressive disruption of the thylakoid structure and an increasing number of osmiophilic glubules. The double membrane envelope surrounding the chloroplast appeared intact until at least 20 d after anthesis. The tonoplast also appeared intact up to 20 d. At later stages of senescence of the leaf the outer membrane of the chloroplast adjacent to the tonoplast appeared to break but the inner membrane of the envelope appeared intact until at least 35 d after anthesis.Abbreviation RuBPCase ribulose-1,5-bisphosphate carboxylase (EC. 4.1.1.39) I=Waters et al. 1980  相似文献   

18.
The technique of EDTA-enhanced phloem exudation (King and Zeevaart, 1974: Plant Physiol. 53, 96–103) was evaluated with respect to the collection and identification of amino acids exported from senescing wheat leaves. Whilst the characteristics of the exudate collected conform with many of the accepted properties of phloem exudate, unexpectedly high molar proportions of phenylalanine and tyrosine were observed. By comparing exudation into a range chelator solutions with exudation into water, the increased exudation of phenylalanine and tyrosine relative to the other amino acids occurring when ethylene-diaminetetracetic acid was used, was considered to an artefact.In plants thought to be relying heavily on mobilisation of protein reserves to satisfy the nitrogen requirements of the grain, the major amino acids present in flag-leaf phloem exudate were glutamate, aspartate, serine, alanine and glycine. Only small proportions of amides were present until late in senescence when glutamine became the major amino acid in phloem exudate (25 molar-%). Glutamine was always the major amino acid in xylem sap (50 molar-%).The activities of glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.7.1), glutamate dehydrogenase (EC 1.4.1.3) and asparagine synthetase (EC 5.3.5.4) were measured in the flag leaf throughout the grain-filling period. Glutamine synthetase and glutamate-synthase activities declined during this period. Glutamate-dehydrogenase activity was markedly unchanged despite variation in the number of multiple forms visualised after gel electrophoresis. The activity of the enzyme reached a peak only very late in the course of senescence of the flag leaf. No asparagine-synthetase activity could be detected in the flag leaf during the grain-filling period.II. Peoples et al. (1980)  相似文献   

19.
Intact amyloplasts from endosperm of developing wheat grains have been isolated by first preparing the protoplasts and then fractionating the lysate of the protoplasts on percoll and ficoll gradients, respectively. Amyloplasts isolated as above were functional and not contaminated by cytosol or by organelles likely to be involved in carbohydrate metabolism. The enzyme distribution studies indicated that ADP-glucose pyrophosphorylase and starch synthase were confined to amyloplasts, whereas invertase, sucrose synthase, UDP-glucose pyrophosphorylase, hexokinase, phosphofructokinase-2 and fructose-2,6-P2ase were absent fro the amyloplast and mainly confined to the cytosol. Triose-P isomerase, glyceraldehyde-3-P dehydrogenase, phosphohexose isomerase, phosphoglucomutase, phosphofructokinase, aldolase, PPi-fructose-6-P-1 phosphotransferase, and fructose-l,6-P2ase, though predominantly cytosolic, were also present in the amyloplast. Based on distribution of enzymes, a probable pathway for starch biosynthesis in amyloplasts of developing wheat grains has been proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号