首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is to study the preparation and characterization of an immobilized L-glutamic decarboxylase (GDC) and develop a sensitive method for the determination of L-glutamate using a new biosensor, which consists of an enzyme column reactor of GDC immobilized on a novel ion exchange resin (carboxymethyl-copolymer of allyl dextran and N.N'-methylene-bisacrylamide CM-CADB) and ion analyzer coupled with a CO(2) electrode. The conditions for the enzyme immobilization were optimized by the parameters: buffer composition and concentration, adsorption equilibration time, amount of enzyme, temperature, ionic strength and pH. The dynamic response of Na(2)HPO(4)-citric acid buffer system selected is much better than that of the others, 0.10 M HAc-0.10 M NaAc and 0.10 M sodium citrate-0.10 M citric acid. The initial rate of the enzyme reaction v(0) in this buffer system is 1.76 mol. l(-1) min(-1), moreover, the rate of the enzyme reaction appears linear in the first 4 min. The optimum adsorption equilibrium time is around 6 h. The amount of enzyme adsorbed on CM-CADB resin affects the response to substrate L-glutamic acid, the widest range of linearity is obtained with over 30 mg (GDC)/g(resin). The GDC activity immobilized on CM-CADB reaches a maximum when the immobilization temperature was kept around 40 degrees C. pH was kept at 4.4 when measuring the activity of the immobilized GDC. No variation of the activity of immobilized GDC is observed when the capacity is over 2.5 meq/g.(CM-CADB resin). The properties of the immobilized enzyme on CM-CADB were characterized. No significant improvement can be achieved when the substrate concentration exceeds 12.00 mmol/l, where the activity of immobilized GDC is equal to 1.58 mmol/l.min.g. The optimum pH is found to be 5.2, which changes 0.2 unit, comparing with that of the free GDC (5.0). The optimum temperature is found to be around 48 degrees C, which is lower than that of free GDC (55 degrees C). The critical temperature of the free GDC and the immobilized GDC is approximately 50 degrees C and 45 degrees C, respectively. The half-life of the activity is 127 days when the immobilized enzyme was stored in the cold (4 degrees C). An immobilized GDC enzyme column reactor matched with a flow injection system-ion analyzer coupled with CO(2) electrode-data collection system made up the original form of the apparatus of biosensor for determining of L-glutamic acid. The determination conditions are that the buffer solution is 0.10 M Na(2)HPO(4)-0.05 M citric acid at pH 4.4 and t = 37 degrees C. The limit of detection is 1.0 x 10(-)(5) M. The linearity response is in the range of 5 x 10 (-2) - 5 x 10 (-5) M. The equation of linear regression of the calibration curve is y = 43.3x + 181.6 (y is the milli-volt of electrical potential response, x is the logarithm of the concentration of the substrate of L-glutamic acid). The correlation coefficient equals 0.99. The coefficient of variation equals 2.7%.  相似文献   

2.
Whole cells of Escherichia coli containing aspartase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol). The immobilized cell preparation was used to convert ammonium fumarate to l-aspartic acid. Properties of the immobilized E. coli cells containing aspartase were investigated with a batch reactor. A 1.67-fold increase in the l-aspartic acid production rate was observed at 37 degrees C as compared to 25 degrees C operating temperature. The pH optimum was broad, ranging from 8.5 to 9.2. Increasing the concentration of ammonium fumarate to 1.5 M from 1.0 M negatively affected the reaction rate. l-Aspartic acid was produced at an average rate of 2.18 x 10 mol/min per g (wet weight) of immobilized E. coli cells with a 37 degrees C substrate solution consisting of 1.0 M ammonium fumarate with 1 mM Mg (pH 9.0).  相似文献   

3.
Techniques for the immobilization of bovine carbonic anhydrase (BCA) on porous silica beads and graphite are presented. Surface coverage on porous silica beads was found to be 1.5 x 10(-5) mmol BCA/m(2), and on graphite it was 1.7 x 10(-3) mmol BCA/m(2) nominal surface area. Greater than 97% (silica support) and 85% (graphite support) enzyme activity was maintained upon storage of the immobilized enzyme for 50 days in pH 8 buffer at 4 degrees C. After 500 days storage, the porous silica bead immobilized enzyme exhibited over 70% activity. Operational stability of the enzyme on silica at 23 degrees C and pH 8 was found to be 50% after 30 days. Catalytic activity expressed as an apparent second-order rate constant K'(Enz) for the hydrolysis of p-nitrophenyl acetate (p-NPA) catalyzed by BCA immobilized on silica beads and graphite at pH 8 and 25 degrees C is 2.6 x 10(2) and 5.6 x 10(2) M(-1)s(-1) respectively. The corresponding K(ENZ) value for the free enzyme is 9.1 x 10(2) M(-1)s(-1). Activity of the immobilized enzyme was found to vary with pH in such a manner that the active site pK, on the porous silica bead support is 6.75, and on graphite it is 7.41. Possible reasons for a microenvironmental influence on carbonic anhydrase pK(a), are discussed. Comparison with literature data shows that the enzyme surface coverage on silica beads reported here is superior to previously reported data on silica beads and polyacrylamide gels and is comparable to an organic matrix support. Shifts in BCA-active site pK(a) values with support material, a lack of pH dependent activity studies in the literature, and differing criteria for reporting enzyme activity complicate literature comparisons of activity; however, immobilized BCA reported here generally exhibits comparable or greater activity than previous reports for immobilized BCA.  相似文献   

4.
固定化青霉素V酰化酶的制备及性质   总被引:2,自引:0,他引:2  
尖镰孢(Fusarium oxysporum)FP941青霉素V酰化酶经γ氧化铝吸附洗脱、硫酸铵沉淀和脱盐处理后,固定在环氧丙烯聚合物载体上,湿固定化酶表现活力为217 IU/g,固定化产率为53%。固定化酶作用最适温度为55℃,最适pH为80;在pH50~110及50℃以下稳定;37℃使用25次后,酶活力保留90%。  相似文献   

5.
颗粒状固定化青霉素酰化酶的研究   总被引:10,自引:0,他引:10  
韩辉  徐冠珠 《微生物学报》2001,41(2):204-208
将巨大芽孢杆菌 (Bacillusmegaterium)胞外青霉素酰化酶通过共价键结合到聚合物载体EupergitC颗粒环氧基团上 ,制成的颗粒状固定化青霉素酰化酶表现活力达 1 40 0 μ/g左右。固定化酶水解青霉素的最适 pH8 0 ,最适温度为 55℃。在pH6 0~ 8 5、温度低于 40℃时固定化酶活力稳定。在 pH8 0、温度 37℃时 ,固定化酶对青霉素的表现米氏常数Ka为 2×1 0 - 2 mol/L ;苯乙酸为竞争性抑制剂 ,抑制常数Kip为 2 8× 1 0 - 2 mol/L ;6 APA为非竞争性抑制剂 ,抑制常数Kia为 0 1 2 5mol/L。固定化酶水解青霉素 ,投料浓度为 8% ,在使用 2 0 0批后 ,保留活力 80 %左右 ,6 APA收率平均达 89 48%。  相似文献   

6.
The molecular mass of destabilase isolated from the medicinae leech Hirudo medicinalis was found to be equal to 12.3 kDa. A kinetic analysis of the sole presently known synthetic substrate, L-gamma-Glu-pNA, showed that the enzyme is relatively stable to heating (5 min, 70 degrees C); the pH optimum lies at 7.0-8.5. The enzyme has a specific activity of 0.15 x 10(-9) mol.s-1.mg-1; Km = 2.2 x 10(-4) M, kcat is 3.53 x 10(-3) s-1 (pH 8.0, 37 degrees C).  相似文献   

7.
Protein stability remains one of the main factors limiting the realization of the full potential of protein therapeutics. Poly(ethylene glycol) (PEG) conjugation to proteins has evolved into an important tool to overcome instability issues associated with proteins. The observed increase in thermodynamic stability of several proteins upon PEGylation has been hypothesized to arise from reduced protein structural dynamics, although experimental evidence for this hypothesis is currently missing. To test this hypothesis, the model protein alpha-chymotrypsin (alpha-CT) was covalently modified with PEGs with molecular weights (M(W)) of 700, 2,000 and 5,000 and the degree of modification was systematically varied. The procedure did not cause significant tertiary structure changes. Thermodynamic unfolding experiments revealed that PEGylation increased the thermal transition temperature (T(m)) of alpha-CT by up to 6 degrees C and the free energy of unfolding [DeltaG(U) (25 degrees C)] by up to 5 kcal/mol. The increase in stability was found to be independent of the PEG M(W) and it leveled off after an average of four PEG molecules were bound to alpha-CT. Fourier-transformed infrared (FTIR) H/D exchange experiments were conducted to characterize the conformational dynamics of the PEG-conjugates. It was found that the magnitude of thermodynamic stabilization correlates with a reduction in protein structural dynamics and was independent of the PEG M(W). Thus, the initial hypothesis proved positive. Similar to the thermodynamic stabilization of proteins by covalent modification with glycans, PEG thermodynamically stabilizes alpha-CT by reducing protein structural dynamics. These results provide guidance for the future development of stable protein formulations.  相似文献   

8.
A quantitative model for the slow reversible hydrophobic deactivation of alpha-chymotrypsin (alpha-CT) is proposed. Kinetic results are obtained for (1) the situation in which the inhibitor concentration, although remaining constant during the course of a run, can be varied independently of the concentration of nonself-inhibiting substrate, and for (2) the situation in which the self-inhibiting substrate concentration decreases during the course of a run, and independent variation of inhibitor and substrate concentrations is not possible. Excellent quantitative agreement between theory and experiment is obtained for a wide range of conditions using 3-(n-hexanoyl-O-benzoate (with dodecylsulfate as the inhibitor), and 3-(n-decanoyl)-O-benzoate as the self-inhibiting substrate. Activation enthalpies and entropies for the hydrophobic deactivation of alpha-CT by dodecylsulfate and tetradecyltrimethylammonium are determined. For comparison, activation enthalpies and entropies for the alpha-CT hydrolysis of 3-(n-heptanoyl)-O-benzoate are determined; evidence for a thermally induced conformational transition in alpha-CT at 30 degrees C is obtained.  相似文献   

9.
Penicillin amidase, alpha-chymotrypsin and urease have been immobilized in water-soluble nonstoichiometric polyelectrolyte complexes (N-PEC). N-PEC are formed by modified poly(N-ethyl-4-vinyl-pyridinium bromide) (polycation) and excess poly(methylacrylic acid) (polyanion). N-PEC are a new class of polymers capable, characteristically, of phase transitions solution in equilibrium precipitate induced by slight change in pH or ionic strength. Neither the chemical structure of the carrier nor the number of cross-linkages between an enzyme and a carrier change on phase transition. That gives an unique opportunity to elucidate the difference between enzymes immobilized on water-soluble and water-insoluble supports. A detailed study of the phase transition effect on thermal stability of the enzymes and protein-protein interactions has been carried out. The following effects were found. Pronounced thermal stabilization of penicillin amidase and urease may be achieved on two conditions: the enzyme is in the precipitate; (b) the enzyme is linked to the N-PEC nucleus. Then the thermal stability of N-PEC-bound penicillin amidase increases 7-fold at pH 5.7, 60 degrees C, and 300-fold at pH 3.1, 25 degrees C, compared to the native enzyme. For urease, the thermal stabilization increases 20-fold at pH 5.0, 70 degrees C. The localization of enzyme on N-PEC has been established by titration of alpha-chymotrypsin bound to a polycation or polyanion with basic pancreatic trypsin inhibitor. Both in solution (pH 6.1) and in N-PEC precipitate (pH 5.7), an alpha-chymotrypsin molecule bound to a polyanion is fully exposed to the solution. If the enzyme is bound to a polycation, only 20% of alpha-chymotrypsin molecules in the precipitate and 40% in solution retain their ability for protein-protein interactions. This means that a polycation-bound enzyme is localized in the hydrophobic nucleus of the complex, whereas the polyanion-bound enzyme sits on the hydrophilic shell of the complex. On pH-induced phase transition (pH decreases from 6.1 to 5.7), there occurs a stepwise decrease in penicillin amidase activity which is due to a 9.8-fold increase in the Km for 2-nitro-4-phenylacetamidobenzoic acid. Change of the catalytic activity and thermal stability of N-PEC-bound penicillin amidase is fully reversible and reproducible. Such soluble-insoluble immobilized enzymes with controllable thermal stability and activity may be used for simulating events in vivo and in biotechnology.  相似文献   

10.
Whole cells of Pseudomonas dacunhae containing l-aspartate beta-decarboxylase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol; W. R. Grace & Co., Lexington, Mass.). The immobilized cell preparation was used to convert l-aspartic acid to l-alanine. Properties of the immobilized P. dacunhae cells containing aspartate beta-decarboxylase activity were investigated with batch reactors. Retention of enzyme activity was observed to be as much as 100% when cell lysis was allowed to occur before immobilization. The pH and temperature optima were determined to be 5.5 and 45 degrees C, respectively. Immobilized P. dacunhael-aspartate beta-decarboxylase activity was stabilized by the addition of 0.1 mM pyridoxal-5-phosphate and 0.1 mM alpha-ketoglutaric acid to a 1.7 M ammonium aspartate (pH 5.5) substrate solution. Under conditions of semicontinuous use in a batch reactor, a 2.5% loss in immobilized l-aspartate beta-decarboxylase activity was observed over a 31-day period.  相似文献   

11.
The structures of various covalent phosphorylated derivatives of alpha-chymotrypsin (alpha-CT) have been studied by 31P NMR spectroscopy. Diisopropylphosphoryl-alpha-chymotrypsin (alpha-DIPCT) shows a single 31P signal at ca. 0.0 ppm (pH 4). At low pH, the 31P NMR spectrum of alpha-DIPCT gradually changed with the appearance of one or two additional peaks. The ratio of the peaks varied with pH, time, and concentration. One of these two new downfield peaks (both at ca. 2.0 ppm) has been previously identified by Markley and co-workers (Markley, 1979; Porubcan et al., 1979) and van der Drift et al. (1985) as an aged monoisopropylphosphoryl-alpha-chymotrypsin (alpha-MIPCT) and is confirmed by our studies. A new additional downfield signal, separate from the alpha-MIPCT signal, is attributed to a dimer of the phosphorylated alpha-DIPCT. Phosphorylation of the enzyme with diphenyl chlorophosphate yields a monophenylphosphoryl-alpha-chymotrypsin (alpha-MPPCT) that also showed a single 31P signal at -2.1 ppm (pH 7). However, the spectrum did not change as a function of pH, incubation time, or concentration. Comparison of the 31P chemical shifts of the native and denatured phosphorylated derivatives of alpha-chymotrypsin suggests changes in the conformation about the P-O ester bonds are at least partially responsible for the various 31P chemical shift differences.  相似文献   

12.
A cold-active beta-galactosidase of Antarctic marine bacterium Pseudoalteromonas sp. 22b was synthesized by an Escherichia coli transformant harboring its gene and immobilized on glutaraldehyde-treated chitosan beads. Unlike the soluble enzyme the immobilized preparation was not inhibited by glucose, its apparent optimum temperature for activity was 10 degrees C higher (50 vs. 40 degrees C, respectively), optimum pH range was wider (pH 6-9 and 6-8, respectively) and stability at 50 degrees C was increased whilst its pH-stability remained unchanged. Soluble and immobilized preparations of Antarctic beta-galactosidase were active and stable in a broad range of NaCl concentrations (up to 3 M) and affected neither by calcium ions nor by galactose. The activity of immobilized beta-galactosidase was maintained for at least 40 days of continuous lactose hydrolysis at 15 degrees C and its shelf life at 4 degrees C exceeded 12 months. Lactose content in milk was reduced by more than 90% over a temperature range of 4-30 degrees C in continuous and batch systems employing the immobilized enzyme.  相似文献   

13.
A disposable fiber-optic sensor based on the immobilized tyrosinase enzyme in a composite biopolymer and its application for the detection of 3,4-dihydroxyphenyalanine (L-dopa) and its analog are described. The enzymatic oxidation product of L-dopa was stabilized through formation of an adduct with 3-methyl-2-benzothiazoline hydrazone resulting in enhanced accuracy and sensitivity of the measurements. The response was found to be linear and concentration dependent in the range of 5 x 10(-5) to 4 x 10(-4) M (r(2) = 0.9307) for the substrate l-dopa over the pH range 5.8 to 7.2 with response times of 8 min. The immobilized enzyme films are stable for 4 months when stored under moisture-free conditions at 4 degrees C.  相似文献   

14.
The enzyme catalyzing the transfer of glucose from uridine diphosphate glucose to indoxyl yielding the indoxyl glucoside indican was isolated from Baphicacanthus cusia Bremek (Acanthaceae). The indoxyl-uridine diphosphate glucose (UDPG)-glucosyltransferase was purified to homogeneity in six chromatographic steps. The decisive step for the recovery of a homogeneous enzyme was the application of immobilized metal affinity chromatography yielding an 863-fold purified enzyme. From a total of 60 substances tested, in addition to the natural substrate 3-OH-indole (indoxyl), only 4-OH-, 5-OH-, 6-OH-, and 7-OH-indole were accepted as substrates by the glucosyltransferase. However, the latter substrates were metabolized to varying extent. The optimum pH of the enzyme was 8.5, the optimum temperature was 30 degrees C and the isoelectric point was pH 6.5. The M(r) of the enzyme was determined to be 60 +/- 2 x 10(3). Indoxyl as substrate yielded a K(m) of 1.2 mM, while a K(m) of 1.7 mM was found for UDPG.  相似文献   

15.
Preparations of alkaline phosphatase from E. coli, immobilized on Sepharose, with a specific activity of 40-60 U/g wet weight were obtained. The immobilized enzyme was stable up to 50 degrees C; at higher temperatures it was inactivated. At 70 degrees most of the activity was lost for 1 h. The substrate (AMP) stabilized the enzyme. In the temperature range from 30 to 40 degrees C activation of the enzyme was observed, especially pronounced in the presence of the substrate. The pH optimum of the immobilized enzyme activity (7.8-8.2) is shifted towards the acid region, as compared to the soluble enzyme (8.0-8.6). The kinetic parameters for inhibition by the reaction product were determined using the integral Michaelis-Menten equation. KmAMP was found to be higher in case of the immobilized enzyme as compared to the soluble one (5.02 X 10(-4) M and 1.85 X 10(-5) M, respectively), which seems to be associated with diffusion limitations.  相似文献   

16.
Alkaline nucleotide pyrophosphatase was isolated from the Pichia guilliermondii Wickerham ATCC 9058 cell-free extracts. The enzyme was 740-fold purified by saturation of ammonium sulphate, gel-chromatography on Sephadex G-150 and ion-exchange chromatography on DEAE-cellulose. Nucleotide pyrophosphatase is the most active at pH 8.3 and 49 degrees C. The enzyme catalyzes the hydrolysis of FAD, NAD+, NADH, NADPH, GTP. The Km value for FAD is 2.4 x 10(-4) M and for NAD+--5.7 x 10(-6) M. The hydrolysis of FAD was inhibited by NAD+, NADP+, ATP, AMP, GTP, PPi and Pi. The Ki for NAD+, AMP and Na4P2O7 was 1.7 x 10(-4) M, 1.1 x 10(-4) M and 5 x 10(-5) M, respectively. Metal chelating compounds, 8-oxyquinoline, o-phenanthroline and EDTA, inhibited completely the enzyme activity. The EDTA effect was irreversible. The molecular weight of the enzyme determined by gel-filtration on Sephadex G-150 and thin-layer gel-filtration chromatography was 78000 dalton. Protein-bound FAD of glucose oxidase is not hydrolyzed by the alkaline nucleotide pyrophosphatase. The enzyme is stable at 2 degrees C in 0.01 M tris-HCl-buffer (pH 7.5).  相似文献   

17.
Chymotrypsin is a prominent member of the family of serine proteases. The present studies demonstrate the presence of a native fragment containing 14 residues from Ile16 to Trp29 in alpha-chymotrypsin that binds to chymotrypsin at the active site with an exceptionally high affinity of 2.7 +/- 0.3 x 10(-11) M and thus works as a highly potent competitive inhibitor. The commercially available alpha-chymotrypsin was processed through a three phase partitioning system (TPP). The treated enzyme showed considerably enhanced activity. The 14 residue fragment was produced by autodigestion of a TPP-treated alpha-chymotrypsin during a long crystallization process that lasted more than four months. The treated enzyme was purified and kept for crystallization using vapour the diffusion method at 295 K. Twenty milligrams of lyophilized protein were dissolved in 1 mL of 25 mM sodium acetate buffer, pH 4.8. It was equilibrated against the same buffer containing 1.2 M ammonium sulfate. The rectangular crystals of small dimensions of 0.24 x 0.15 x 0.10 mm(3) were obtained. The X-ray intensity data were collected at 2.2 angstroms resolution and the structure was refined to an R-factor of 0.192. An extra electron density was observed at the binding site of alpha-chymotrypsin, which was readily interpreted as a 14 residue fragment of alpha-chymotrypsin corresponding to Ile-Val-Asn-Gly-Glu-Glu-Ala-Val-Pro-Gly-Ser-Trp-Pro-Trp(16-29). The electron density for the eight residues of the C-terminus, i.e. Ala22-Trp29, which were completely buried in the binding cleft of the enzyme, was of excellent quality and all the side chains of these eight residues were clearly modeled into it. However, the remaining six residues from the N-terminus, Ile16-Glu21 were poorly defined although the backbone density was good. There was a continuous electron density at 3.0 sigma between the active site Ser195 Ogamma and the carbonyl carbon atom of Trp29 of the fragment. The final refined coordinates showed a distance of 1.35 angstroms between Ser195 Ogamma and Trp29 C indicating the presence of a covalent linkage between the enzyme and the native fragment. This meant that the enzyme formed an acyl intermediate with the autodigested fragment Ile16-Trp29. In addition to the O-C covalent bond, there were several hydrogen bonds and hydrophobic interactions between the enzyme and the native fragment. The fragment showed a high complementarity with the binding site of alpha-chymotrypsin and the buried part of the fragment matched excellently with the corresponding buried part of Turkey ovomucoid inhibitor of alpha-chymotrypsin.  相似文献   

18.
聚丙烯腈纤维固定化青霉素酰化酶性质的研究   总被引:3,自引:0,他引:3  
将巨大芽孢杆菌(Bacillusmegaterium)青霉素酞化酶连接到聚丙烯腈纤维载体上,制成固定化青霉素酰化酶。其表现活力约为2000u/g。水解青霉素G的最适温度为50℃;最适PH为9.0;在PHS.5~10.3、温度50℃以下酶的活力稳定;表观米氏常数Ka为1.33×10-8mol/L;最大反应速度Vm为2.564mmol·min-1;苯乙酸为竞争性抑制剂,抑制常数为0.16mol/L。水解10%的青霉素G钾盐溶液,使用20批,保留酶活力80%。  相似文献   

19.
Exomaltohexaohydrolase (E.C.3.2.1.98) was immobilized by radiocopolymerization of some synthetic monomers which were mixed in various combinations. Irradiation was carried out while the mixture of monomers and enzymes was frozen in petroleum ether-dry-ice bath. Recovery of the immobilized enzyme was 44-75%.The optimum pH of the enzyme slightly shifted to the acidic side. The pH stability was improved remarkably by immobilization. The enzyme was stable retaining more than 90% of its original activity in the range pH 4-11. The optimum reaction temperature of the enzyme increased about 2 degrees C. Heat stability was also improved by immobilization, and that the enzyme retained about 40% of its original activity after treatment at 75 degrees C for 15 min. The immobilized enzyme was stable to the repeated use of 20 cycles. The K(m) value of the enzyme for short-chain amylose was almost the same as that of native enzyme. When soluble starch was used as the substrate, the K(m), value of the enzyme was three times as large as that of native enzyme. Effects of various metal ions and inhibitors on the immobilized enzyme were also studied compared to the native enzyme.  相似文献   

20.
黄曲霉毒素解毒酶的固定化及其性质的研究   总被引:8,自引:0,他引:8  
黄曲霉毒素是农作物常见的受污染的霉菌毒素,毒性大,稳定性高,是潜在的肝癌致癌物,对人的危害较大。该毒素的解毒与去毒一直是受到关注的问题。黄曲霉毒素解毒酶对黄曲霉毒素有特殊的去毒和降解作用,但是该酶的稳定性离解决实际问题尚有一段距离。报道了对黄曲霉毒素解毒酶的固定化,并对固定化处理后酶的稳定性、性质、催化活性、解毒活性进行了测定。结果表明,通过固定化操作酶的解毒活性被保留下来,酶的酸碱稳定性、热稳定性、放置稳定性等均得到显著的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号