首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary Glycerol is widely used in protein isolation pathways to improve folding and solubility of the proteins of interest. Amino acid composition analysis of protein samples hydrolyzed in the presence of glycerol resulted in underestimation of aspartate and glutamate, when compared to hydrolysis in the absence of glycerol. Quantification of free asparagine, aspartic acid, glutamine and glutamic acid hydrolyzed with hydrochloric acid or methanesulfonic acid in the presence of glycerol resulted in poor recoveries of aspartate and glutamate (between 6 and 66%). Gas chromatography-mass spectrometry analysis of the hydrolyzates revealed, as expected, the presence of esterification products. The esters were formed between the primary and secondary hydroxyl groups of the glycerol and both carboxyl groups of the amino acids. Protein samples intended for compositional analysis should be free of glycerol.Abbreviations EI electron impact - GC-MS gas chromatography-mass spectrometry - MS mass spectrum - MSA methanesulfonic acid - BSTFA bis(trimethylsilyl)trifluoroacetamide - TMS trimethylsilyl  相似文献   

2.
31P cross-polarization/magic angle sample spinning nuclear magnetic resonance spectra have been obtained for pyridoxal 5′-phosphate (PLP) bound to glycogen phosphorylase b (GPb) in two different crystalline forms, monoclinic and tetragonal. Analysis of the intensities of the spinning sidebands in the nuclear magnetic resonance spectra has enabled estimates of the principal values of the 31P chemical shift tensors to be obtained. Differences between the two sets of values suggest differences in the environment of the phosphate moiety of the pyridoxal phosphate in the two crystalline forms. The tensor for the tetragonal crystalline form, T state GPb, is fully consistent with those found for dianionic phosphate groups in model compounds. The spectrum for the monoclinic crystalline form, R state GPb, although closer to that of dianionic than monoanionic model phosphate compounds, deviates significantly from that expected for a simple dianion or monoanion. This is likely to result from specific interactions between the PLP phosphate group and residues in its binding site in the protein. A possible explanation for the spectrum of the monoclinic crystals is that the shift tensor is averaged by a proton exchange process between different ionization states of the PLP associated with the presence of a sulfate ion bound in the vicinity of the PLP.  相似文献   

3.
Glycogen phosphorylase contains firmly bound pyridoxal 5′-phosphate (PLP), and catalyzes the reversible transfer of a glucosyl moiety between glucose-1-phosphate (G-1-P) and α-1,4-glucan. X-ray crystallographic studies revealed that PLP is located in a pocket where the phosphate group of PLP is pointed toward the G-1-P binding site. We have synthesized pyridoxal(5′)diphospho(1)-α-d-glucose, as a model compound for the phosphate-phosphate interaction between PLP and G-1-P, and reconstituted the enzyme with this compound. The resulting enzyme is catalytically inactive in itself, but, in the presence of glucan, the glycosyl moiety of this compound is transferred to the glucan forming a new α-1,4-glucosidic linkage along with the production of pyridoxal 5′-diphosphate. This glucosyltransfer is similar to the normal catalytic reaction in various aspects, although the rate is smaller in the order of three. AMP accelerates the transfer about 24 times compared with the reaction in its absence. We have more recently used pyridoxal(5′)triphospho(1)-α-D-glucose to reconstitute the enzyme. In the presence of glucan, the compound bound to enzyme is gradually degraded to pyridoxal 5′-triphosphate. This reaction is essentially dependent on AMP, and proceeds several times more slowly than the glucosyltransfer from the diphospho compound. These results provide evidence for the direct phosphate-phosphate interaction between the coenzyme and the substrate in the normal enzyme reaction, and seem to reflect a rather wide allowance in regard to this interaction.  相似文献   

4.
Procedures for the unambiguous detection and for the isolation and mass spectrometric identification of pyrroloquinoline quinone (PQQ) are presented. The procedure involved acid hydrolysis of protein in the presence of phenylhydrazine and successive isolation and identification of the formed adduct using mass spectrometry. In HPLC the phenylhydrazone of PQQ gave many methylated products, of which the predominant compound was the pentamethylated derivative. After reaction of the phenylhydrazone derivative of PQQ (PHPQQ) with ammonia, a product was obtained which did not contain phenylhydrazine and which formed a pentamethylated derivative as the main methylation product. The HPLC profiles of the methylated products of PHPQQ and of its ammonia derivative were very characteristic and could be used for identification in addition to mass spectrometry. However, prolonged treatment of proteins with phenylhydrazine during hydrolysis can result in the formation of a material that resembles PQQ in some aspects of its behaviour. Thus, analysis by MS is essential for unambiguous identification. This analytical procedure was applied to pig plasma benzylamine oxidase, pig aorta lysyl oxidase, pig kidney diamine oxidase and bovine serum albumin with negative results. However, samples of pronase contained variable quantities of non-covalently bound PQQ: this can lead to erroneous identification of PQQ in enzyme after pronase digestion.  相似文献   

5.
Escherichia coli pyridoxine (pyridoxamine) 5'-phosphate oxidase (PNPOx) catalyzes the oxidation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate to pyridoxal 5'-phosphate (PLP) using flavin mononucleotide (FMN) as the immediate electron acceptor and oxygen as the ultimate electron acceptor. This reaction serves as the terminal step in the de novo biosynthesis of PLP in E. coli. Removal of FMN from the holoenzyme results in a catalytically inactive apoenzyme. PLP molecules bind tightly to both apo- and holoPNPOx with a stoichiometry of one PLP per monomer. The unique spectral property of apoPNPOx-bound PLP suggests a non-Schiff base linkage. HoloPNPOx with tightly bound PLP shows normal catalytic activity, suggesting that the tightly bound PLP is at a noncatalytic site. The tightly bound PLP is readily transferred to aposerine hydroxymethyltransferase in dilute phosphate buffer. However, when the PNPOx. PLP complex was added to aposerine hydroxymethyltransferase suspended in an E. coli extract the rate of reactivation of the apoenzyme was several-fold faster than when free PLP was added. This suggests that PNPOx somehow targets PLP to aposerine hydroxymethyltransferase in vivo.  相似文献   

6.
Pyridoxal-5'-phosphate (PLP) is widely used by many enzymes in reactions where amino acids are interconverted. Whereas the role of the pyridoxal ring in catalysis is well understood, the functional role of the single phosphate group in PLP has been less studied. Here we construct unambiguous connection diagrams that describe the interactions among the three non-ester phosphate oxygen atoms of PLP and surrounding atoms from the protein binding site and from water molecules, the so-called phosphate group binding "cup". These diagrams provide a simple means to identify common recognition motifs for the phosphate group in both similar and different protein folds. Diagrams were constructed and compared in the cases of five newly determined structures of PLP-dependent transferases (fold type I enzymes) and, additionally, two non-PLP protein complexes (indole-3-glycerol phosphate synthase (IGPS) with bound indole-3-glycerol phosphate (IGP) and old yellow enzyme (OYE) with bound flavin mononucleotide (FMN)). A detailed comparison of the diagrams shows that three positions out of ten in the structure of the phosphate group binding "cup" contain invariant atoms, while seven others are occupied by conserved atom types. This level of similarity was also observed in the fold type III (TIM beta/alpha-barrel) enzymes that bind three different ligands: PLP, IGP and FMN.  相似文献   

7.
Pig kidney 3,4-dihydroxyphenylalanine (dopa) decarboxylase (EC 4.1.1.28) was purified to homogeneity. Treatment of the enzyme with phenylhydrazine (PH) according to a procedure developed for analysis of quinoproteins gave products which were identified as the hydrazone of pyridoxal phosphate (PLP) and the C(5)-hydrazone of pyrroloquinoline quinone (PQQ). This method failed, however, in quantifying the amounts of cofactor. Direct hydrolysis of the enzyme by refluxing with hexanol and concentrated HCl led to detachment of PQQ from the protein in a quantity of 1 PQQ per enzyme molecule. In view of the reactivity of PQQ towards amines and amino acids, we postulate that it participates as a covalently bound cofactor in the catalytic cycle of the enzyme, in interplay with PLP. Since several other enzymes have been reported to show the atypical behaviour of dopa decarboxylase, it seems that the PLP-containing group of enzymes can be subdivided into pyridoxoproteins and pyridoxo-quinoproteins.  相似文献   

8.
Heating at 70 degrees C with and without added pyridoxal phosphate (PLP) had strikingly different effects on cystathionase protein from normal long-term lymphoid cell lines and on the enzymes from cells derived from patients with vitamin-B6-responsive cystathioninuria. PLP added to extracts of normal cells afforded complete protection against heat inactivation, whereas inactivation of the cystathionase protein in extracts obtained from two cystathioninuric lines was greater in the presence of PLP than in its absence.  相似文献   

9.
Y C Chang  T McCalmont  D J Graves 《Biochemistry》1983,22(21):4987-4993
Pyridoxal-reconstituted phosphorylase was used as a model system to study the possible functions of the 5'-phosphoryl group of pyridoxal 5'-phosphate (PLP) in rabbit muscle glycogen phosphorylase. Kinetic study was conducted by using competitive inhibitors of phosphite, an activator, and alpha-D-glucopyranose 1-phosphate (glucose-1-P) to study the relationship between the PLP phosphate and the binding of glucose-1-P to phosphorylase. Fluorine-19 nuclear magnetic resonance (19F NMR) spectroscopy of fluorophosphate bound to pyridoxal phosphorylase showed that its ionization state did not change during enzymatic catalysis. Evaluation of the apparent kinetic parameters for the activation of pyridoxal phosphorylase with different analogues having varied pKa2 values demonstrated a dependency of KM on pKa2. Molybdate, capable of binding as chelates in a trigonal-bipyramidal configuration, was tested for its inhibitory property with pyridoxal phosphorylase. On the basis of the results in this study, several conclusions may be drawn: (1) The bound phosphite in pyridoxal phosphorylase and, possibly, the 5'-phosphoryl group of PLP in native phosphorylase do not effect the glucose-1-P binding. (2) One likely function of the 5'-phosphoryl group of PLP in native phosphorylase is acting as an anchoring point to hold the PLP molecule and/or various amino acid side chains in a proper orientation for effective catalysis. (3) The force between the PLP phosphate and its binding site in phosphorylase is mainly electrostatic; a change of ionization state during catalysis is unlikely. (4) Properties of the central atoms of different anions are important for their effects as either activators or inhibitors of pyridoxal phosphorylase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Plasma amine oxidases (EC 1.4.3.6) are classified as containing the organic cofactor pyridoxal phosphate. Biochemical and bioassays on the pig plasma amine oxidase fail to reveal the presence of pyridoxal phosphate and 31P n.m.r. evidence is also inconsistent with pyridoxal phosphate in the enzyme. Resonance Raman spectral studies on phenylhydrazone derivatives of the pig and bovine plasma enzymes have been carried out and comparisons made with the corresponding derivatives of pyridoxal phosphate and pyrroloquinoline quinone (PQQ). The resonance Raman evidence indicates that the cofactor in both plasma amine oxidases is PQQ or a closely related species and not pyridoxal phosphate. The results substantiate earlier reports concerning the identity of the organic cofactor.  相似文献   

11.
We have developed an assay for determining the 18O enrichment of water in biological fluids. Urine, plasma, or whole blood is reacted with phosphorous pentachloride to yield phosphoric acid. Derivatization of phosphoric acid with diazomethane generates trimethyl phosphate. The enrichment of trimethyl phosphate is nearly four times that of water and is assayed using gas chromatography-mass spectrometry (electron impact ionization). Yang et al. (1998, Anal. Biochem. 258, 315-321) assayed the 2H enrichment of body water after exchange with acetone, by gas chromatography-mass spectrometry. The combination of our 18O method and the 2H method of Yang et al. allows one to measure energy expenditure via "doubly labeled" water (2H(2)O + H(2)18O), using small samples of body fluids. These techniques were used to measure energy expenditure in mice, in which the 18O enrichment of body water can be monitored down to 0.025%.  相似文献   

12.
The binding of pyridoxal 5'-phosphate to human serum albumin   总被引:1,自引:0,他引:1  
Most of the pyridoxal 5'-phosphate (PLP) in plasma is bound to protein, primarily albumin. Binding to protein is probably important in transporting PLP in the circulation and in regulating its metabolism. The binding of PLP to human serum albumin (HSA) was studied using absorption spectral analysis, equilibrium dialysis, and inhibition studies. The kinetics of the changes in the spectrum of PLP when mixed with an equimolar concentration of HSA at pH 7.4 followed a model for two-step consecutive binding with rate constants of 7.72 mM-1 min-1 and 0.088 min-1. The resulting PLP-HSA complex had absorption peaks at 338 and 414 nm and was reduced by potassium borohydride. The 414-nm peak is probably due to a protonated aldimine formed between PLP and HSA. The binding of PLP to bovine serum albumin (BSA) at equimolar concentrations at pH 7.4 occurred at about 10% the rate of its binding to HSA. The final PLP-BSA complex absorbed maximally at 334 nm and did not appear to be reduced with borohydride. Equilibrium dialysis of PLP and HSA indicated that there were more than one class of binding sites of HSA for PLP. There was one high affinity site with a dissociation constant of 8.7 microM and two or more other sites with dissociation constants of 90 microM or greater. PLP binding to HSA was inhibited by pyridoxal and 4-pyridoxic acid. It was not inhibited appreciably by inorganic phosphate or phosphorylated compounds. The binding of PLP to BSA was inhibited more than its binding to HSA by several compounds containing anionic groups. It is concluded that PLP binds differently to HSA than it does to BSA.  相似文献   

13.
Salmonella typhimurium DCyD (StDCyD) is a fold type II pyridoxal 5' phosphate (PLP)-dependent enzyme that catalyzes the degradation of D-Cys to H(2)S and pyruvate. It also efficiently degrades β-chloro-D-alanine (βCDA). D-Ser is a poor substrate while the enzyme is inactive with respect to L-Ser and 1-amino-1-carboxy cyclopropane (ACC). Here, we report the X-ray crystal structures of StDCyD and of crystals obtained in the presence of D-Cys, βCDA, ACC, D-Ser, L-Ser, D-cycloserine (DCS) and L-cycloserine (LCS) at resolutions ranging from 1.7 to 2.6 ?. The polypeptide fold of StDCyD consisting of a small domain (residues 48-161) and a large domain (residues 1-47 and 162-328) resembles other fold type II PLP dependent enzymes. The structures obtained in the presence of D-Cys and βCDA show the product, pyruvate, bound at a site 4.0-6.0 ? away from the active site. ACC forms an external aldimine complex while D- and L-Ser bind non-covalently suggesting that the reaction with these ligands is arrested at Cα proton abstraction and transimination steps, respectively. In the active site of StDCyD cocrystallized with DCS or LCS, electron density for a pyridoxamine phosphate (PMP) was observed. Crystals soaked in cocktail containing these ligands show density for PLP-cycloserine. Spectroscopic observations also suggest formation of PMP by the hydrolysis of cycloserines. Mutational studies suggest that Ser78 and Gln77 are key determinants of enzyme specificity and the phenolate of Tyr287 is responsible for Cα proton abstraction from D-Cys. Based on these studies, a probable mechanism for the degradation of D-Cys by StDCyD is proposed.  相似文献   

14.
A novel N-acylamino sugar was isolated from the antigenic trehalose-containing lipooligosaccharides IV-VII of Mycobacterium kansasii. The native reducing sugar, its O-acetyl derivative, the methylglycoside, the O-acetylated alditol, and the de-N-acylated N-, O-acetylated alditol were all examined by high resolution 1H NMR, 13C NMR, direct probe and gas-liquid chromatography-mass spectrometry in both the chemical ionization and electron impact modes, and by high resolution mass spectrometry. The dideoxy sugar had a formula weight of 277, an empirical formula of C12H23NO6, C- and O-methyl substituents, and a N-methoxypropionyl branch. Upon alkaline hydrolysis, methoxypropionic acid was released and shown to correspond to the synthetic compound by gas chromatography and chemical ionization and electron impact mass spectrometry. The structure 4,6-dideoxy-2-O-methyl-3-C-methyl-4-(2'-methoxypropionamido)-alpha and beta-L-manno-hexopyranose, with the trivial name N-acylkansosamine, is proposed. The sugar is present in the more polar, highly antigenic lipooligosaccharides and is regarded as exclusive to M. kansasii and as its primary cell wall immunodeterminant.  相似文献   

15.
R. Hampp  M. Goller 《Planta》1983,159(4):314-321
Leaf mesophyll protoplasts of oat (Avena sativa L.) were allowed to fix 14C-labeled bicarbonate in the absence or presence of pyridoxal phosphate (PLP), a specific inhibitor of the phosphate translocator of the inner envelope membrane of chloroplasts. The incubation was terminated by a method of rapid integrated protoplast homogenization and fractionation, and compartmented levels of label contained in sugars, phosphate esters, amino acids and organic acids were determined. The results show that the addition of PLP to a suspension of intact protoplasts causes an accumulation of phosphate esters in the chloroplasts stroma for up to 2.5 min of incubation, with a corresponding decrease in the cytosol. Prolonged treatment of protoplasts with PLP in the light resulted in a decrease of starch-associated label, combined with higher levels of labeled sugars in the cytosol, indicating a switch from phosphorolytic to hydrolytic starch degradation. Together with the determination of pool sizes of triose phosphates and of inorganic phosphate, the results demonstrate that the method employed is an important tool in investigating processes of intracellular regulation. They are discussed with respect to the permeability and possible side reactions of PLP, as well as in the light of reports on PLP action on isolated chloroplasts.Abbreviations Pi orthophosphate - PLP pyridoxal 5-phosphate - TP triosephosphate  相似文献   

16.
Haemoglobin (Hb) adducts from aromatic amines (AAs) are well established biomarkers of exposure. Tobacco smoking and occupational exposure are major sources of AA Hb adducts. The origin of background levels in non-smokers and non-occupationally exposed humans are largely unknown. Here we examine the determination of AA Hb adducts, focussing on the analytical strategies for Hb isolation, removal of unbound AAs from Hb solutions, hydrolysis of the Hb bound AAs, extraction, preconcentration, clean-up and derivatisation of the free amines for determination by gas chromatography-mass spectrometry. Finally, a detailed summary of available results on the determination of AA Hb adducts is given.  相似文献   

17.
Pyridoxal 5′-phosphate (PLP) is a cofactor for dozens of B6 requiring enzymes. PLP reacts with apo-B6 enzymes by forming an aldimine linkage with the ε-amino group of an active site lysine residue, thus yielding the catalytically active holo-B6 enzyme. During protein turnover, the PLP is salvaged by first converting it to pyridoxal by a phosphatase and then back to PLP by pyridoxal kinase. Nonetheless, PLP poses a potential toxicity problem for the cell since its reactive 4′-aldehyde moiety forms covalent adducts with other compounds and non-B6 proteins containing thiol or amino groups. The regulation of PLP homeostasis in the cell is thus an important, yet unresolved issue. In this report, using site-directed mutagenesis, kinetic, spectroscopic and chromatographic studies we show that pyridoxal kinase from E. coli forms a complex with the product PLP to form an inactive enzyme complex. Evidence is presented that, in the inhibited complex, PLP has formed an aldimine bond with an active site lysine residue during catalytic turnover. The rate of dissociation of PLP from the complex is very slow, being only partially released after a 2-hour incubation with PLP phosphatase. Interestingly, the inactive pyridoxal kinase•PLP complex can be partially reactivated by transferring the tightly bound PLP to an apo-B6 enzyme. These results open new perspectives on the mechanism of regulation and role of pyridoxal kinase in the Escherichia coli cell.  相似文献   

18.

Background  

Oligomeric enzymes can undergo a reversible loss of activity at low temperatures. One such enzyme is tryptophanase (Trpase) from Escherichia coli. Trpase is a pyridoxal phosphate (PLP)-dependent tetrameric enzyme with a Mw of 210 kD. PLP is covalently bound through an enamine bond to Lys270 at the active site. The incubation of holo E. coli Trpases at 2°C for 20 h results in breaking this enamine bond and PLP release, as well as a reversible loss of activity and dissociation into dimers. This sequence of events is termed cold lability and its understanding bears relevance to protein stability and shelf life.  相似文献   

19.
Previous studies have pointed towards a cofactor role for pyridoxal 5'-phosphate (PLP) in lysyl oxidase, the enzyme that generates the peptidyl aldehyde precursor to the lysine-derived cross-linkages in elastin and collagen. The nature of a carbonyl moiety in purified bovine aortic lysyl oxidase was explored in the present study. A PLP dinitrophenylhydrazone could not be isolated from lysyl oxidase, although corresponding preparations of aspartate aminotransferase, a PLP-dependent enzyme, yielded this derivative, as revealed by h.p.l.c. Analysis of lysyl oxidase for PLP after reduction of the enzyme by NaBH4, a procedure that converts PLP-protein aldimines into stable 5'-phosphopyridoxyl functions, also proved negative in tests using monoclonal antibody specific for this epitope. Lysyl oxidase was competitively inhibited by phenylhydrazine, and inhibition became irreversible with time at 37 degrees C, displaying a first-order inactivation rate constant of 0.4 min-1 and KI of 1 microM. [14C]Phenylhydrazine was covalently incorporated into the enzyme in a manner that was prevented by prior modification of the enzyme with beta-aminopropionitrile, a specific active-site inhibitor, and which correlated with functional active-site content. The chemical stability of the enzyme-bound phenylhydrazine exceeded that expected of linkages between PLP and proteins. The absorption spectrum of the phenylhydrazine derivative of lysyl oxidase was clearly distinct from that of the phenylhydrazone of PLP. It is concluded that lysyl oxidase contains a carbonyl cofactor that is not identical with PLP and that is bound to the enzyme by a stable chemical bond.  相似文献   

20.
Methods for rapid and direct quantification of enzyme kinetics independent of the substrate stand in high demand for both fundamental research and bioprocess development. This study addresses the need for a generic method by developing an automated, standardizable HPLC platform monitoring reaction progress in near real‐time. The method was applied to amine transaminase (ATA) catalyzed reactions intensifying process development for chiral amine synthesis. Autosampler‐assisted pipetting facilitates integrated mixing and sampling under controlled temperature. Crude enzyme formulations in high and low substrate concentrations can be employed. Sequential, small (1 µL) sample injections and immediate detection after separation permits fast reaction monitoring with excellent sensitivity, accuracy and reproducibility. Due to its modular design, different chromatographic techniques, e.g. reverse phase and size exclusion chromatography (SEC) can be employed. A novel assay for pyridoxal 5'‐phosphate‐dependent enzymes is presented using SEC for direct monitoring of enzyme‐bound and free reaction intermediates. Time‐resolved changes of the different cofactor states, e.g. pyridoxal 5'‐phosphate, pyridoxamine 5'‐phosphate and the internal aldimine were traced in both half reactions. The combination of the automated HPLC platform with SEC offers a method for substrate‐independent screening, which renders a missing piece in the assay and screening toolbox for ATAs and other PLP‐dependent enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号