首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In newborn pigs, cerebral ischemia abolishes both increased cerebral prostanoid production and cerebral vasodilation in response to hypercapnia and hypotension. Attenuation of prostaglandin endoperoxide synthase activity could account for the failure to increase prostanoid synthesis and loss of responses to these stimuli. To test this possibility, arachidonic acid (3, 6, or 30 micrograms/ml) was placed under cranial windows in newborn pigs that had been exposed to 20 min of cerebral ischemia. The conversion to prostanoids and pial arteriolar responses to the arachidonic acid were measured. At all three concentrations, arachidonic acid caused similar increases in pial arteriolar diameter in sham control piglets and piglets 1 hr postischemia. Topical arachidonic acid caused dose-dependent increases of PGE2 in cortical periarachnoid cerebral spinal fluid. 6-keto-PGF1 alpha and TXB2 only increased at the highest concentration of arachidonic acid (30 micrograms/ml). Cerebral ischemia did not decrease the conversion of any concentration of arachidonic acid to PGE2, 6-keto-PGF1 alpha, or TXB2. We conclude that ischemia and subsequent reperfusion do not result in inhibition of prostaglandin endoperoxide synthase in the newborn pig brain. Therefore, the mechanism for the impaired prostanoid production in response to hypercapnia and hypotension following cerebral ischemia appears to involve reduction in release of free arachidonic acid.  相似文献   

2.
In newborn pigs, cerebral ischemia abolishes both increased cerebral prostanoid production and cerebral vasodilation in response to hypercapnia and hypotension. Attenuation of prostaglandin endoperoxide synthase activity could account for the failure to increase prostanoid systhesis and loss of responses to these stimuli. To test this possibility, arachidonic acid (3,6, or 30μg/ml) was placed under cranial windows in newborn pigs that been exposed to 20 min of cerebral ischemia. The conversion to prostanoids and pial arteriolar responses to the arachidonic acid were measured. At all three concentration, arachidonic acid caused similar increases in pial arteriolar diameter in sham control piglets and piglets 1 hr postischemia. Topical arachidonic acid caused dosedependent increases of PGE2 in cortical periarachnoid cerebral spinal fluid. 6-keto-PGF and TXB2 only increased at the highest concentration of arachidonic acid (30 μg/ml). Cerebral ischemia did not decrease the conservation of any concentration of arachidonic acid to PGE2, 6-keto-PGF, or TXB2. We conclude that ischemia and subsequent reperfusion do not result in inhibition of prostaglandin endoperoxide synthase in the newborn pig brain. Therefore, the mechanism for the impaired prostanoid production in response to hypercapnia and hypotension following cerebral ischemia appears to involve reduction in release of free arachidonic acid.  相似文献   

3.
Arachidonic acid (AA) and its vasoactive metabolites have been implicated in the pathogenesis of brain damage induced by cerebral ischemia. The membrane AA concentrations can be reduced by changes in dietary fatty acid intake. The purpose of the present study was to investigate the effects of chronic ethyl docosahexaenoate (E-DHA) administration on the generation of eicosanoids of AA metabolism during the period of reperfusion after ischemia in gerbils. Weanling male gerbils were orally pretreated with either E-DHA (100, 200 mg/kg) or vehicle, once a day, for 10 weeks, and subjected to transient forebrain ischemia by bilateral common carotid occlusion for 10 min. E-DHA (200 mg/kg) pretreatment significantly decreased the content of brain lipid AA at the termination of treatment, prevented postischemic impaired regional cerebral blood flow (rCBF) and reduced the levels of brain prostaglandin (PG) PGF(2alpha) and 6-keto-PGF(1alpha), and thromboxane B(2) (TXB(2)), as well as leukotriene (LT) LTB(4) and LTC(4) at 30 and 60 min of reperfusion compared with the vehicle, which was well associated with the attenuated cerebral edema in the E-DHA-treated brain after 48 h of reperfusion. These data suggest that the E-DHA (200 mg/kg) pretreatment reduces the postischemic eicosanoid productions, which may be due to its reduction of the brain lipid AA content.  相似文献   

4.
We investigated effects of exogenous leukotrienes (C4, D4, or E4) on levels of prostanoids in cerebrospinal fluid in newborn pigs (1-5 days). A "closed" cranial window was placed over the parietal cortex. Pial arterial diameter was measured with a microscope and electronic micrometer system. Levels in cerebrospinal fluid (CSF) of 6-keto-Prostaglandin F1 alpha (6-keto-PGF1 alpha), Thromboxane B2 (TXB2), and Prostaglandin E2 (PGE2) were measured by radioimmunoassay. Topical application of leukotrienes C4, D4, or E4 (5,000 ng/ml) similarly constricted pial arteries by 15 +/- 2% (n = 14) (mean +/- SEM). In addition, leukotrienes increased levels of 6-keto-PGF1 alpha from 806 +/- 136 to 1,612 +/- 304 pg/ml (n = 13), TXB2 from 161 +/- 31 to 392 +/- 81 pg/ml (n = 10), and PGE2 from 2,271 +/- 342 to 4,636 +/- 740 pg/ml (n = 13). Each type of leukotriene had similar effects on prostanoid synthesis. In other experiments (n = 5), we found that 2.0 ng/ml PGE2 in CSF dilated pial arteries by 24 +/- 8% and that 1.0 ng/ml PGI2 dilated pial arteries by 15 +/- 6%. These results indicate that leukotrienes are able to increase levels of prostanoids in cerebral cortex.  相似文献   

5.
The aim of the study was to determine the prostacyclin (PGI2) and thromboxane A2 (TXA2) synthetase activities of myocardial tissue and their variation during ischemia and reperfusion. Regional ischemia was induced by 10 min occlusion of the left anterior descending coronary artery in isolated Langendorff rabbit hearts. Biosynthesis of PGI2 and TXA2 were carried out by using arachidonic acid as substrate and left ventricle microsomes (LVM) from ischemic and non-ischemic areas as sources of PGI2 and TXA2 synthetase. 6-keto-PGF1 alpha and TXB2, stable metabolites of PGI2 and TXA2 respectively, were determined by radioimmunoassay. Experiments carried out under the adopted conditions showed that LVM were able to synthetise PGI2 as well as TXA2 from arachidonic acid. On the other hand, ischemia depressed both PGI2 and TXA2 synthetase activities of cardiac tissue: the depression was more pronounced on TXA2 synthetase than on PGI2 synthetase with no significant difference between ischemic and non-ischemic regions. Moreover, ischemia increased the ratio 6-keto-PGF1 alpha/TXB2 indicating therefore that it can facilitate the formation of PGI2. The post ischemic reperfusion of the heart counteracted the decrease in PGI2 synthetase induced by ischemia which returned to the normal level: reperfusion also slightly reversed the decrease in TXA2 the decrease in TXA2 synthetase. However, the diminution in TXA2 synthetase of non-ischemic myocardium was attenuated but it remained lower than the normal level. These results suggested that the whole left ventricle is affected by regional ischemia. Furthermore it appears that myocardial TXA2 synthetase is more vulnerable than PGI2 synthetase to a lack of oxygen and nutrients.  相似文献   

6.
The effect of 0.01 microM dipyridamole on prostanoid production was studied in atria from normal, acute diabetic and insulin-treated diabetic rats. Diabetes was induced by i.v. administration of 65 mg/kg of streptozotocin (STZ) and the rats were killed 5 days later. Atria were incubated during 60 min in Krebs solution. The prostanoids 6-keto-prostaglandin (PG) F1alpha (6-keto-PGF1alpha) and thromboxane (TX) B2, stable metabolites of prostacyclin and TXA2, respectively, as well as PGE2 were measured by reversed phase high-performance liquid chromatography-UV. In diabetic atria, 6-keto-PGF1alpha production was reduced by 50% whereas TXB2 release was increased two-fold compared to the controls, with a significant decrease in the 6-keto-PGF1alpha/TXB2 ratio. The preincubation with 0.01 microM dipyridamole for 30 min increased 6-keto-PGF1alpha production in control, diabetic and insulin-treated diabetic atria whereas TXB2 release was not modified. This effects provoked an significant increase in the 6-keto-PGF1alpha/TXB2 ratio. In conclusion, STZ diabetes reduces the 6-keto-PGF1alpha/TXB2 ratio impairing the functional status of the atria. Dipyridamole increased this ratio in atria from diabetic and insulin-treated diabetic rats, thus opposing the effects of STZ diabetes. This fact suggests the possibility of a participation of the drug in pathologies characterized by an imbalance in the production of vasodilator and vasoconstrictor prostanoids.  相似文献   

7.
研究粘附分子和白细胞与脑缺血/再灌流损伤的病理联系,运用原位杂交和免疫组化技术对36只SD大鼠脑缺血区细胞间粘附分子(ICAM-1)表达和淋巴细胞机能相关抗原(LFA-1)阳性细胞浸润进行了观察。结果显示,脑缺血区的毛细胞血管内皮细胞表达ICAM-1 mRNA发生于脑缺血1h,在脑缺血1h/再灌流8h达到高峰。而脑缺血区毛细血管ICAM-1蛋白质的表达则发生于脑缺血1h/再灌流2h,高峰出现于脑缺血1h/再灌流16h,LFA-1阳性细胞在脑缺血区的聚集发生在脑缺血1h,并随再灌流时间延长,其聚集数量逐渐增加。结果提示,脑缺血/再灌流能诱导缺血区的血管内皮细胞表达ICAM-1 mRNA和蛋白质,进而导致白细胞在脑缺血区的浸润,此可能是脑缺血/再灌流损伤的病理机制之一。  相似文献   

8.
These experiments examine the transfer of urea, sodium, and sucrose from blood to brain in an animal model of newborn cerebral ischemia-reperfusion injury. Cerebral ischemia (20 min) was produced in anesthetized, ventilated piglets by increasing intracranial pressure above mean arterial blood pressure, thereby reducing cerebral perfusion pressure to zero. The blood to brain transfer of urea, sodium, and sucrose was then measured in sham control piglets and at 30 min and 2 hr of reperfusion following ischemia. At 30 min of reperfusion, urea and sodium transfer were increased while sucrose transfer was unchanged. However, at 2 hr of reperfusion, transfer of all three tracers was elevated. The difference in the time course of increased transport of these substances into the brain following ischemia cannot be explained by size differences, indicating that changes in the blood-brain barrier following ischemia are more complex than merely opening junctions between cells and creating leaky sites. Alterations in blood-brain barrier transport could participate in altered neuronal function after ischemia-reperfusion injury.  相似文献   

9.
Formation of prostanoids in human umbilical vessels perfused in vitro   总被引:1,自引:0,他引:1  
Four major prostanoids (6-keto-PGF1 alpha, PGE2, PGF2 alpha and TXB2) were measured by specific radioimmunoassays in the outputs from human umbilical vessels perfused in vitro. As evaluated by scanning electron microscopy (SEM) only few blood platelets were attached to the vessel wall. After an initial flush with decreasing concentrations of all four prostanoids, a stable stage was reached, lasting for 4-5 hours. During this stage the production could be inhibited by indomethacin and only slightly stimulated with arachidonic acid. The TXA2 synthetase inhibitor UK 38485 depressed the TXB2 production, while only slightly affecting the other three prostanoids at very high concentrations. The arteries produced relatively more 6-keto-PGF1 alpha than did the vein.  相似文献   

10.
To examine the biochemical regulation of morphine sulfate (MS) on prostanoid synthesis, conscious newborn piglets received a bolus dose of 100 microg/kg followed by a continuous infusion dose of 100 microg/kg/h. The control group received equivalent volume bolus and continuous infusion of 5% dextrose. Blood samples were drawn from the femoral artery and sagittal sinus vein before, during and after infusion for measurement of prostanoids. The expression of mRNAs encoding cyclooxygenases (COX)-1 and -2 in the brainstem, thalamus, cortex, and cerebellum of the newborn piglets were also examined. Systemic PGE2 levels declined substantially during and post MS infusion (p < 0.01), whereas sagittal sinus vein PGE2 levels increased following the bolus dose (p < 0.01) and at 4 h of continuous infusion (p < 0.01). MS infusion did not affect systemic 6-ketoPGF1alpha levels, however, in the cerebral circulation 6-ketoPGF1alpha levels increased 146% (p < 0.01) following the bolus dose and remained elevated throughout the infusion and post infusion times. Systemic TxB2 levels increased transiently at 4 h (p < 0.01) and sagittal sinus vein TxB2 increased at 0.5 and 1 h (p < 0.01) during continuous infusion. RT-PCR assays revealed a 1.5- (p < 0.001) to 4-fold (p < 0.001) increased expression of COX-1 mRNA in the MS-infused brain samples. In contrast, no differences in COX-2 mRNA were detected between the groups. These data imply that MS may have significant effects on prostanoid synthesis in the newborn. The data further show that the MS-induced prostanoid responses appear to be mediated via COX-1.  相似文献   

11.
Arachidonic acid is transiently accumulated in the brain as a result of a variety of pathological conditions. The synthesis and release of some of its metabolites, namely, prostaglandin E2 (PGE2), thromboxane B2 (TXB2), and 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) from cortical slices of mice were studied following exposure to 6 min of hypoxia (7% O2), 45 s of anoxia, and 5 min-4 h of reoxygenation following anoxia. Hypoxia induced a slight increase in the rate of TXB2 release and a slight decrease in the rate of PGE2 release, whereas 6-keto-PGF1 alpha was unaffected. Anoxia (45 s) followed by reoxygenation induced a transient increase in the release of PGE2 and of 6-keto-PGF1 alpha with a return to the normal rate at 30 min and 2 h of recovery, respectively. However, the rate of TXB2 synthesis and release reached its peak (twofold increase) after 1 h and remained significantly higher than the control rate even after 4 h of normal air breathing. Our results demonstrate that hypoxia and anoxia, even of short duration, selectively trigger the activity of thromboxane synthetase and that this elevated rate of synthesis and release persists long after normal oxygen supply is restored. We suggest that enhanced thromboxane synthesis, with normal prostacyclin levels, might have a role in the pathophysiology of ischemic cell damage.  相似文献   

12.
Cao D  Li M  Xue R  Zheng W  Liu Z  Wang X 《Life sciences》2005,78(1):74-81
Dietary docosahexaenoic acid (DHA) intake can decrease the level of membrane arachidonic acid (AA), which is liberated during cerebral ischemia and implicated in the pathogenesis of brain damage. Therefore, in the present study, we investigated the effects of chronic ethyl docosahexaenoate (E-DHA) administration on mortality and cerebral edema induced by transient forebrain ischemia in gerbils. Male Mongolian gerbils were orally pretreated with either E-DHA (100, 150 mg/kg) or vehicle, once a day, for 4 weeks and were subjected to transient forebrain ischemia by bilateral common carotid occlusion for 30 min. The content of brain lipid AA at the termination of treatment, the survival ratio, change of regional cerebral blood flow (rCBF), brain free AA level, thromboxane B(2) (TXB(2)) production and cerebral edema formation following ischemia and reperfusion were evaluated. E-DHA (150 mg/kg) pretreatment significantly increased survival ratio, prevented post-ischemic hypoperfusion and attenuated cerebral edema after reperfusion compared with vehicle, which was well associated with the reduced levels of AA and TXB(2) in the E-DHA treated brain. These data suggest that the effects of E-DHA pretreatment on ischemic mortality and cerebral edema could be due to reduction of free AA liberation and accumulation, and its metabolite synthesis after ischemia and reperfusion by decreasing the content of membrane AA.  相似文献   

13.
Head trauma (HT) was induced in the left hemisphere of rats by a weight drop device. Edema was maximal 24 h after HT in the injured zone, and PGE2, TXB2 and 6-keto-PGF1 alpha were elevated in both the injured and remote areas. The effect of a specific thromboxane synthetase inhibitor, OKY-046, on the outcome of HT was studied. OKY-046, 100 mg/kg, was given to rats immediately and 8 h after HT. The neurological severity score (NSS) was evaluated at 1 h after HT, and at 24 h, just prior to sacrifice. Specific gravity (SG) of both hemispheres was measured after decapitation. Prostaglandins (PGs) were extracted from the site of injury and from the frontal lobes, remote from the injury, and assayed by RIA. Basal levels of PGE2 and 6-keto-PGF1 alpha were not reduced by the drug while basal TXB2 levels were lowered. However, the increased production due to HT of all PGs, was inhibited by OKY-046, especially that of TXB2. The ratio of TXB2/6-keto-PGF1 alpha, known to affect vascular tone, was reduced by OKY-046 treatment as a result of TXA2 synthesis inhibition. Still, no effect was found on the neurological outcome (as evaluated by the NSS), or on edema formation (expressed by reduced SG). Thus, based on the present findings increased TXA2 synthesis cannot be implicated in the pathophysiology of cerebral edema or dysfunction following HT.  相似文献   

14.
Plasma levels of thromboxane B2 (TXB2) and 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), stable metabolites of two prostanoids with opposing biological effects, TXA2 and prostacyclin, were measured by radioimmunoassay in normal pregnancy (controls) and pregnancy complicated by hypertension (PIH) from 32 to 36 (Period 1; P1) and from 36 to 40 (Period 2; P2) weeks of gestation. The plasma concentration of each compound in the control subjects was 265.6 +/- 58.4 (TXB2), 132.4 +/- 16.5 (6-keto-PGF1 alpha) for P1 (n = 10) and 142.6 +/- 11.8 (TXB2), 68.5 +/- 5.2 (6-keto-PGF1 alpha) for P2 (n = 10) respectively (pg/ml, mean +/- s.e). In the patients with PIH, TXB2 concentrations increased moderately for P1 (419.2 +/- 21.2; n = 7) and significantly (p less than 0.005) for P2 (452.8 +/- 31.0; n = 7) respectively (pg/ml, mean +/- s.e), while the plasma levels of 6-keto-PGF1 alpha revealed a slight to moderate decrease both for P1 (84.5 +/- 4.0; n = 7) and P2 (59.7 +/- 8.1; n = 7) respectively (pg/ml, mean +/- s.e). The physiological balance of TXB2 to 6-keto-PGF1 alpha was significantly greater (p less than 0.005) in the patients with PIH, where the TXB2/6-keto-PGF1 alpha ratio was 5.2 +/- 0.7 for P1 and 9.4 +/- 2.3 for P2 respectively (mean +/- s.e) compared with that of the controls, where it was 2.4 +/- 0.4 for P1 and 2.0 +/- 0.2 for P2 respectively (mean +/- s.e).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
This study was carried out to investigate the proportion of the 6-keto prostaglandin F1 alpha (6-keto PGF1 alpha) and thromboxane B2 (TXB2) alteration that is due to ischemia in pancreas transplantation against the proportion due to reperfusion. For this purpose, Lewis rats were divided in three experimental groups: Group I = Control, Group II = Donor pancreas subjected to 15 minutes of cold ischemia, Group III = Same as group II but pancreas were transplanted to the recipient individual and then subjected to reperfusion. The results indicate that increases in pancreas 6-keto PGF1 alpha occur as a consequence of cold ischemia while TXB2 remains unchanged. When blood flow was restored, 6-keto PGF1 alpha remained unchanged compared to the ischemic group while pancreatic levels of TXB2 were significantly increased. These results suggest a different induction of prostanoid metabolism during ischemia and reperfusion in pancreatic tissue.  相似文献   

16.
Spontaneous changes in isometric developed tension (IDT) as a function of time after isolation (contractile constancy) in uteri from control-castrated and castrated chronic streptozotocin-diabetic rats, were explored. The effects of injecting 17-beta estradiol (Eo) were also studied. No differences in the minor changes of contractile constancy, between control and diabetic preparations, during a period of 60 min, were detected, whereas uteri from non-diabetic Eo injected animals (0.5 + 1.0 ug, prior to sacrifice), exhibited a profound reduction of IDT, significantly greater than in tissues obtained from Eo injected-diabetic rats. Moreover, basal generation and outputs into the suspending solution of prostaglandins (PGs) E1, E2 and F2 alpha, were explored in the same groups, at 60 min following tissue isolation. The basal outputs of these three PGs were similar in castrated control rats, but preparations from castrated-diabetics released significantly more PGE1. The administration of Eo to castrated-diabetics, failed to alter the releases of the three PGs explored. In addition, the metabolism of labelled arachidonic acid (AA) into different prostanoids (6-keto-PGF1, PGF2, PGE2 and thromboxane B2-TXB2), was also investigated. The non-diabetic spayed rat uterus converted AA into these four prostanoids, the transformation into 6-keto-PGF1 alpha (as an index of PGI2 formation) being the most prominent. In preparations from diabetic rats the formation) being the most prominent. In preparations from diabetic rats the formation of 6-keto-PGF1 alpha, PGF2 alpha and PGE2, was significantly smaller than in controls, whereas a greater % of TXB2 formation (as an index of TXA2), was detected. On the other hand uterine preparations from non-diabetic spayed rats injected with Eo formed less 6-keto-PGF1 alpha and PGE2 and similar amounts of PGF2 alpha or of TXB2 from AA, than Eo injected controls, whereas uteri from castrated diabetic animals injected with Eo, formed a similar % of 6-keto-PGF1 alpha, PGF2 alpha and PGE2 from AA, than tissue preparations from non-estrogenized controls. However, the enhanced transformation of the labelled fatty acid precursor (AA) into TXB2 in the diabetic group, was significantly reduced by the steroid. The role of the augmented generation and release of PGE1 in uteri from diabetic rats is discussed in terms of precedents indicating the relevance of PGs type E supporting rat uterine motility. In addition the influence of Eo is attractive, because its reducing effect on TX production, in diabetes, a disease known to be accompanied by enhanced synthesis of vasoconstrictor and platelet aggregation TXA2, and by frequent obstructive circulat  相似文献   

17.
Isolated hearts, excised from spontaneously hypertensive male rats treated orally with cicletanine, a new furopyridine anti-hypertensive drug, were subjected to 30 min of global ischemia followed by 10 min of reperfusion. The effect of cicletanine on reperfusion-induced arrhythmias in relation to 6-keto-PGF1 alpha and thromboxane (TXB2) release was studied. After 30 min of global ischemia, the incidence (total) of ventricular fibrillation (VF) and ventricular tachycardia (VT) was reduced by 2-week pretreatment of the rats with 30 and 100 mg/kg of cicletanine (VF, 33% at 30 mg/kg and 25% at 100 mg/kg vs. 91% in untreated rats; VT, 42% at 30 mg/kg and 42% at 100 mg/kg vs. 100% in untreated rats), while lower doses of cicletanine (3 and 10 mg/kg) failed to reduce the incidence of reperfusion-induced rhythm disturbances. Reperfusion of the ischemic myocardium resulted in a fivefold increase of 6-keto-PGF1 alpha and TXB2 release in the perfusion effluent of fibrillated hearts but not in the perfusion effluent of nonfibrillated hearts. Cicletanine failed to influence the reperfusion-stimulated release of 6-keto-PGF1 alpha and TXB2. These results indicate that the anti-arrhythmic effect of cicletanine in the reperfused myocardium is not related to PGI2 and thromboxane A2 release.  相似文献   

18.
The changes in the levels of protein kinase C [PKC(alpha, beta II, gamma)] were studied in cytosolic and particulate fractions of striatal homogenates from rats subjected to 15 min of cerebral ischemia induced by bilateral occlusion of the common carotid arteries and following 1 h, 6 h, and 48 h of reperfusion. During ischemia the levels of PKC(beta II) and -(gamma) increased in the particulate fraction to 390% and 590% of control levels, respectively, concomitant with a decrease in the cytosolic fraction to 36% and 20% of control, respectively, suggesting that PKC is redistributed from the cytosol to cell membranes. During reperfusion the PKC(beta II) levels in the particulate fraction remained elevated at 1 h postischemia and decreased to below control levels after 48 h reperfusion, whereas PKC(gamma) rapidly decreased to subnormal levels. In the cytosol PKC(beta II) and -(gamma) decreased to 25% and 15% of control levels at 48 h, respectively. The distribution of PKC(alpha) did not change significantly during ischemia and early reperfusion. The PKC activity in the particulate fraction measured in vitro by histone IIIS phosphorylation in the presence of calcium, 4 beta-phorbol 13-myristate 12-acetate, and phosphatidylserine (PS) significantly decreased by 52% during ischemia, and remained depressed over the 48-h reperfusion period. In the cytosolic fraction PKC activity was unchanged at the end of ischemia, and decreased by 47% after 6 h of reperfusion. The appearance of a stable cytosolic 50-kDa PKC-immunoreactive peptide or an increase in the calcium- and PS-independent histone IIIS phosphorylation was not observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
High-performance liquid chromatography procedures were developed which separate leukotrienes (LTs), hydroxy-fatty acids (HETEs), prostaglandins (PGs), the stable metabolite of prostacyclin (6-keto-PGF1 alpha), the stable metabolite of thromboxane A2 (TXB2), 12-hydroxyheptadecatrienoic acid (HHT), and arachidonic acid (AA). Two methods employing reverse-phase columns are described. One method uses a radial compression system, the other a conventional steel column. Both systems employ methanol and buffered water as solvents. The radial compression system requires 60 min for separation of the AA metabolites, while the conventional system requires 100 min. Both methods provide good separation and recovery of 6-keto-PGF1 alpha, TXB2, PGE2, PGF2 alpha, PGD2, LTC4, LTB4, LTD4, LTE4, HHT, 15-, 12-, and 5-HETE; and AA. The 5S,12S-dihydroxy-6-trans, 8-cis, 10-trans, 14-cis-eicosatetraenoic acid (5S,12S-diHETE), a stereoisomer of LTB4, coelutes with LTB4. To determine the applicability of the methods to biologic systems, AA metabolism was studied in two models, guinea pig lung microsomes and rat alveolar macrophages. Both HPLC systems demonstrated good recovery and resolution of eicosanoids from the two biological systems. A simple evaporation technique for HPLC sample preparation, which avoids the use of chromatographic and other time-consuming methodology, is also described.  相似文献   

20.
While prostaglandin production by uterine tissue has been shown to be involved in the contractile mechanism of this tissue, less attention has focused upon the involvement of other prostanoids. We have simultaneously measured in vitro isometric contractility of pregnant rat uteri with the release of prostaglandin F2 alpha (PGF), 6-keto-prostaglandin F1 alpha (6-k-PGF1 alpha) and thromboxane B2 (TXB2) into the bathing medium under various conditions. Frequency of uterine contractions and integrated contractile force (ICF) increased from 15 days of gestation and peaked at the time of parturition. Activity was generally greatest during the first 15 min of incubation except during parturition and on Day 1 postpartum when the uterine segment remained active for 1 h experimental period. Indomethacin (INDO) significantly reduced contractile activity regardless of gestational stage. PGF, TXB2, and 6-k-PGF1 alpha increased with gestational age, peaking at the time of parturition. Production was greatest during the first 15 min of incubation and INDO inhibited production of each prostanoid regardless of gestational stage. Imidazole (100 micrograms/ml) inhibited TXB2 production without affecting PGF or 6-k-PGF1 alpha levels. Frequency of contraction and ICF were not affected by imidazole treatment despite TXB2 reduction. These data demonstrate that the in vitro uterus from pregnant rats is capable of producing prostanoids other than prostaglandins and their production generally parallels uterine contractile activity. Thus, the possibility that these prostanoids are involved in physiologic changes during parturition warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号