首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a membrane-associated Kunitz-type serine protease inhibitor that regulates cell surface and extracellular serine proteases involved in tissue remodeling and tumorigenesis, such as HGFA, matriptase, prostasin and hepsin. We generated HAI-1 deficient mice, which died in utero due to placental defects. The HAI-1(-/-) placental labyrinth exhibited a complete failure of vascularization and a compact morphology of the trophoblast layer. Immunofluorescent staining of collagen IV and laminin and electron microscopy analysis revealed that this aberrant labyrinth architecture was associated with disrupted basement membranes located at the interface of chorionic trophoblasts and allantoic mesoderm. Unlike the placental labyrinth, basement membranes and vasculogenesis were normal in embryo and yolk sac. Therefore, basement membrane defects appear to be the underlying cause for the greatly impaired vascularization and trophoblast branching in HAI-1(-/-) placentas. In wild-type placentas, the expression of matriptase and prostasin co-localized with their physiological inhibitor HAI-1 to the labyrinthine trophoblast cells in proximity to basement membranes. In HAI-1(-/-) placentas, both the localization and expression of the two proteases remained unchanged, implying uncontrolled proteolytic activities of the two enzymes. Our study demonstrates the important role of HAI-1 in maintaining the integrity of basement membrane most likely by regulating extracellular proteolytic activities during placental development.  相似文献   

3.
Hepatocyte growth factor activator inhibitor type 1/serine protease inhibitor Kunitz type 1 (HAI-1/SPINT1) is a membrane-bound Kunitz-type serine protease inhibitor that is abundantly expressed on the surface of cytotrophoblasts, and is critically required for the formation of the placenta labyrinth in mice. HAI-1/SPINT1 regulates several membrane-associated cell surface serine proteases, with matriptase being the most cognate target. Matriptase degrades extracellular matrix protein such as laminin and activates other cell surface proteases including prostasin. This study aimed to analyze the role of HAI-1/SPINT1 in pericellular proteolysis of trophoblasts. In HAI-1/SPINT1-deficient mouse placenta, laminin immunoreactivity around trophoblasts was irregular and occasionally showed an intense punctate pattern, which differed significantly from the linear distribution along the basement membrane observed in wild-type placenta. To explore the molecular mechanism underlying this observation, we analyzed the effect of HAI-1/SPINT1 knock down (KD) on pericellular proteolysis in the human trophoblast cell line, BeWo. HAI-1/SPINT1-KD BeWo cells had increased amounts of cellular laminin protein and decreased laminin degradation activity in the culture supernatant. Subsequent analysis indicated that cell-associated matriptase was significantly decreased in KD cells whereas its mRNA level was not altered, suggesting an enhanced release and/or dislocation of matriptase in the absence of HAI-1/SPINT1. Moreover, prostasin activation and pericellular total serine protease activities were significantly suppressed by HAI-1/SPINT1 KD. These observations suggest that HAI-1/SPINT1 is critically required for the cell surface localization of matriptase in trophoblasts, and, in the absence of HAI-1/SPINT1, physiological activation of prostasin and other protease(s) initiated by cell surface matriptase may be impaired.  相似文献   

4.
Kirchhofer D  Peek M  Lipari MT  Billeci K  Fan B  Moran P 《FEBS letters》2005,579(9):1945-1950
Hepsin, a type II transmembrane serine protease, is highly upregulated in prostate cancer and promotes tumor progression and metastasis. We generated a soluble form of hepsin comprising the entire extracellular domain to show that it efficiently converts single-chain hepatocyte growth factor (pro-HGF) into biologically active two-chain HGF. Hepsin activity was potently inhibited by soluble forms of the bi-Kunitz domain inhibitors HAI-1B (IC(50) 21.1+/-2.7 nM) and HAI-2 (IC(50) 1.3+/-0.3 nM). Enzymatic assays with HAI-1B Kunitz domain mutants (R260A and K401A) further demonstrated that inhibition was due to Kunitz domain-1. The results suggest a functional link between hepsin and the HGF/Met pathway, which may contribute to tumor progression.  相似文献   

5.
Dishevelled-associated activator of morphogenesis 1 (Daam1), a member of the formin protein family, plays an important role in regulating the actin cytoskeleton via mediation of linear actin assembly. Previous functional studies of Daam1 in lower species suggest its essential role in Drosophila trachea formation and Xenopus gastrulation. However, its in vivo physiological function in mammalian systems is largely unknown. We have generated Daam1-deficient mice via gene-trap technology and found that Daam1 is highly expressed in developing murine organs, including the heart. Daam1-deficient mice exhibit embryonic and neonatal lethality and suffer multiple cardiac defects, including ventricular noncompaction, double outlet right ventricles and ventricular septal defects. In vivo genetic rescue experiments further confirm that the lethality of Daam1-deficient mice results from the inherent cardiac abnormalities. In-depth analyses have revealed that Daam1 is important for regulating filamentous actin assembly and organization, and consequently for cytoskeletal function in cardiomyocytes, which contributes to proper heart morphogenesis. Daam1 is also found to be important for proper cytoskeletal architecture and functionalities in embryonic fibroblasts. Biochemical analyses indicate that Daam1 does not regulate cytoskeletal organization through RhoA, Rac1 or Cdc42. Our study highlights a crucial role for Daam1 in regulating the actin cytoskeleton and tissue morphogenesis.  相似文献   

6.
Hepatocyte growth factor activator (HGFA) is responsible for proteolytic activation of the precursor form of hepatocyte growth factor in injured tissues. To date, two specific inhibitors of HGFA have been identified, namely HGFA inhibitor type 1 (HAI-1) and type 2 (HAI-2)/placental bikunin (PB). Both inhibitors are first synthesized as integral membrane proteins having two Kunitz domains and a transmembrane domain, and are subsequently released from cell surface by shedding. Here we show that an active form of HGFA is specifically complexed with membrane-form HAI-1, but not with HAI-2/PB, on the surface of epithelial cells expressing both inhibitors. This binding required the enzyme activity of HGFA. The selective binding of HGFA to the cell surface HAI-1 was further confirmed in an engineered system using Chinese hamster ovary cells, in which only the cells expressing HAI-1 retained exogenous HGFA. The binding of HGFA to HAI-1 was reversible, and no irreversible modifications affecting the enzyme activity occurred during the binding. Importantly, HAI-1 and the HGFA.HAI-1 complex were quickly released from the cell surface by treatment with phorbol 12-myristate 13-acetate or interleukin 1beta accompanying the generation of 58-kDa fragments of HAI-1, which are less potent against HGFA, as well as significant recovery of HGFA activity in the culture supernatant. This regulated shedding was completely inhibited by BB3103, a synthetic zinc-metalloproteinase inhibitor. We conclude that HAI-1 is not only an inhibitor but also a specific acceptor of active HGFA, acting as a reservoir of this enzyme on the cell surface. The latter property appears to ensure the concentrated pericellular HGFA activity in certain cellular conditions, such as tissue injury and inflammation, via the up-regulated shedding of HGFA.HAI-1 complex. These findings shed light on a novel function of the integral membrane Kunitz-type inhibitor in the regulation of pericellular proteinase activity.  相似文献   

7.
The interaction of hepatocyte growth factor (HGF) with c-Met has been implicated in morphogenesis of the kidney, lung, mammary gland, liver, placenta, and limb bud. HGF is secreted as an inactive zymogen and must be cleaved by a serine protease to initiate Met signaling. We show here that a serine protease specific for HGF, HGF activator (HGFA), is expressed and activated by the ureteric bud of the developing kidney in vivo and in vitro. Inhibition of HGFA activity with serine protease inhibitors reduced ureteric bud branching and inhibited glomerulogenesis and nephrogenesis. Activated HGF rescued developing kidneys from the effects of inhibitors. HGFA was localized around the tips of the ureteric bud in developing kidneys, while HGF was expressed diffusely throughout the mesenchyme. These data show that expression of HGF is not sufficient for development, but that its activation is also required. The localization of HGFA to the ureteric bud and the mesenchyme immediately adjacent to it suggests that HGFA creates a gradient of HGF activity in the developing kidney. The creation and shape of gradients of activated HGF by the localized secretion of HGF activators could play an important role in pattern formation by HGF responsive tissues.  相似文献   

8.
9.
Activation of hepatocyte growth factor/scatter factor (HGF/SF) is a critical limiting step in the HGF/SF-induced signaling pathway mediated by MET receptor tyrosine kinase. Although HGF/SF-MET signaling could have potentially important roles in the invasive growth of tumors and tumor angiogenesis, little is known about the regulation of HGF/SF activation in the tumor tissues. This activation occurs in the extracellular milieu caused by proteolytic cleavage at the bond between Arg194-Val195 in the single-chain HGF precursor to generate the active two-chain heterodimeric form. Here we show that activation of HGF/SF is significantly enhanced in colorectal carcinoma tissues compared with normal colorectal mucosa, and HGF activator (HGFA), a recently identified factor XII-like serine proteinase, is critically involved in this process. Furthermore, we also show that HGF activator inhibitor type 1 (HAI-1) should have an important regulatory role in the pericellular activation of HGF/SF having diverse roles acting as a cell surface specific inhibitor of active HGFA and a reservoir of this enzyme on the cell surface. The latter property might paradoxically ensure the concentrated pericellular HGFA activity in certain cellular conditions in which shedding of HAI-1/HGFA complex from the plasma membrane is upregulated.  相似文献   

10.
11.
The glypican (Gpc) family of cell surface heparan sulfate proteoglycans are expressed in a tissue-specific and developmentally regulated fashion. To determine if individual Gpcs can modulate heparin-binding growth factor signaling, we examined hepatocyte growth factor (HGF)-stimulated mitogenic, motogenic, and morphogenic responses of renal tubular cells expressing different Gpcs. Adult inner medullary collecting duct (IMCD) cells were found to express primarily Gpc4 and to proliferate, migrate, and form tubules with HGF, correlating with sustained extracellular signal-regulated kinase (ERK) activation. Embryonic IMCD cells expressing predominantly Gpc3 proliferated and migrated in response to HGF but activated ERK only transiently and failed to form tubules. Overexpressing Gpc-4 but not Gpc-3 or Gpc-1 led to sustained HGF-stimulated ERK activation and rescued the tubulogenic response in these cells. These results demonstrate that both signaling and phenotypic responses to HGF can be regulated by specific Gpc expression patterns.  相似文献   

12.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a Kunitz-type transmembrane serine protease inhibitor initially identified as a potent inhibitor of hepatocyte growth factor activator (HGFA), a serine protease that converts pro-HGF to the active form. HAI-1 also has inhibitory activity against serine proteases such as matriptase, hepsin and prostasin. In this study, we examined effects of HAI-1 on the protease activity and proteolytic activation of human airway trypsin-like protease (HAT), a transmembrane serine protease that is expressed mainly in bronchial epithelial cells. A soluble form of HAI-1 inhibited the protease activity of HAT in vitro. HAT was proteolytically activated in cultured mammalian cells transfected with its expression vector, and a soluble form of active HAT was released into the conditioned medium. The proteolytic activation of HAT required its own serine protease activity. Co-expression of the transmembrane full-length HAI-1 inhibited the proteolytic activation of HAT. In addition, full-length HAI-1 associated with the transmembrane full-length HAT in co-expressing cells. Like other target proteases of HAI-1, HAT converted pro-HGF to the active form in vitro. These results suggest that HAI-1 functions as a physiological regulator of HAT by inhibiting its protease activity and proteolytic activation in airway epithelium.  相似文献   

13.
14.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is an integral membrane Kunitz-type serine proteinase inhibitor initially identified as a potent inhibitor of hepatocyte growth factor activator (HGFA). HGFA is a serum proteinase that is critically involved in the activation of hepatocyte growth factor/scatter factor (HGF/SF) in injured tissue. Previous studies have shown that HAI-1 is expressed on the basolateral surface of various epithelial cells. In this study, we analyzed the expression of HAI-1 in human endothelial cells. Immunohistochemically, HAI-1 protein was observed in the endothelial cells of capillaries, venules and lymph vessels. On the other hand, arterial endothelial cells were poorly stained for HAI-1. Mesothelial cells on the serous surface were also positively immunostained. The endothelial expression of HAI-1 was also examined in cultured human endothelial cells of various origins, such as umbilical vein, microvessels and aorta. Notably, in accordance with the results of immunohistochemistry, HAI-1 mRNA and protein levels were high in the endothelial cells derived from umbilical vein and were hardly detectable in those derived from aorta. A low but distinct level of HAI-1 expression was also observed in endothelial cells from microvessels. As these HAI-1-positive endothelial cells also expressed MET tyrosine kinase, the specific receptor of HGF/SF, it is conceivable that HAI-1 might have an important regulatory role in the HGF/SF-MET signaling axis of endothelial cells, which could be involved in the process of angiogenesis.  相似文献   

15.
16.
We have studied the role of the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) in postnatal mammary gland morphogenesis. Based on its ability to negatively regulate cyclin/Cdk function, loss of p27 may result in unrestrained cellular proliferation. However, recent evidence about the stabilizing effect of p27 on cyclin D1-Cdk4 complexes suggests that p27 deficiency might recapitulate the hypoplastic mammary phenotype of cyclin D1-deficient animals. These hypotheses were investigated in postnatal p27-deficient (p27(-/-)), hemizygous (p27(+/)-), or wild-type (p27(+/+)) mammary glands. Mammary glands from p27(+/)- mice displayed increased ductal branching and proliferation with delayed postlactational involution. In contrast, p27(-/-) mammary glands or wild-type mammary fat pads reconstituted with p27(-/-) epithelium produced the opposite phenotype: hypoplasia, low proliferation, decreased ductal branching, impaired lobuloalveolar differentiation, and inability to lactate. The association of cyclin D1 with Cdk4, the kinase activity of Cdk4 against pRb in vitro, the nuclear localization of cyclin D1, and the stability of cyclin D1 were all severely impaired in p27(-/-) mammary epithelial cells compared with p27(+/+) and p27(+/-) mammary epithelial cells. Therefore, p27 is required for mammary gland development in a dose-dependent fashion and positively regulates cyclin D-Cdk4 function in the mammary gland.  相似文献   

17.
HAI-1 [HGF (hepatocyte growth factor) activator inhibitor-1] is a Kunitz-type transmembrane serine protease inhibitor that forms inhibitor complexes with the trypsin-like serine protease, matriptase. HAI-1 is essential for mouse placental development and embryo survival and together with matriptase it is a key regulator of carcinogenesis. HAI-1 is expressed in polarized epithelial cells, which have the plasma membrane divided by tight junctions into an apical and a basolateral domain. In the present study we show that HAI-1 at steady-state is mainly located on the basolateral membrane of both Madin-Darby canine kidney cells and mammary gland epithelial cells. After biosynthesis, HAI-1 is exocytosed mainly to the basolateral plasma membrane from where 15% of the HAI-1 molecules are proteolytically cleaved and released into the basolateral medium. The remaining membrane-associated HAI-1 is endocytosed and then recycles between the basolateral plasma membrane and endosomes for hours until it is transcytosed to the apical plasma membrane. Minor amounts of HAI-1 present at the apical plasma membrane are proteolytically cleaved and released into the apical medium. Full-length membrane-bound HAI-1 has a half-life of 1.5 h and is eventually degraded in the lysosomes, whereas proteolytically released HAI-1 is more stable. HAI-1 is co-localized with its cognate protease, matriptase, at the basolateral plasma membrane. We suggest that HAI-1, in addition to its protease inhibitory function, plays a role in transporting matriptase as a matriptase-HAI-1 complex from the basolateral plama membrane to the apical plasma membrane, as matriptase is known to interact with prostasin, located at the apical plasma membrane.  相似文献   

18.
Type II transmembrane serine proteases (TTSPs) are structurally defined by the presence of a transmembrane domain located near the N-terminus and a C-terminal extracellular serine protease domain. The human TTSP family consists of 17 members. Some members of the family have pivotal functions in development and homeostasis, and are involved in tumorigenesis and viral infections. The activities of TTSPs are regulated by endogenous protease inhibitors. However, protease inhibitors of most TTSPs have not yet been identified. In this study, we investigated the inhibitory effect of hepatocyte growth factor activator inhibitor type 1 (HAI-1), a Kunitz-type serine protease inhibitor, on several members of the TTSP family. We found that the protease activity of a member, TMPRSS13, was inhibited by HAI-1. A detailed analysis revealed that a soluble form of HAI-1 with one Kunitz domain (NK1) more strongly inhibited TMPRSS13 than another soluble form of HAI-1 with two Kunitz domains (NK1LK2). In addition, an in vitro protein binding assay showed that NK1 formed complexes with TMPRSS13, but NK1LK2 did not. TMPRSS13 converted single-chain pro-hepatocyte growth factor (pro-HGF) to a two-chain form in vitro, and the pro-HGF converting activity of TMPRSS13 was inhibited by NK1. The two-chain form of HGF exhibited biological activity, assessed by phosphorylation of the HGF receptor (c-Met) and extracellular signal-regulated kinase, and scattered morphology in human hepatocellular carcinoma cell line HepG2. These results suggest that TMPRSS13 functions as an HGF-converting protease, the activity of which may be regulated by HAI-1.  相似文献   

19.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a Kunitz-type serine protease inhibitor identified as a strong inhibitor of hepatocyte growth factor (HGF) activator and matriptase. HAI-1 is first produced in a membrane-integrated form with two Kunitz domains in its extracellular region, and subsequent ectodomain shedding releases two major secreted forms, one with a single Kunitz domain and one with two Kunitz domains. To determine the roles of the Kunitz domains in the inhibitory activity of HAI-1 against serine proteases, we constructed various HAI-1 mutant proteins and examined their inhibitory activity against HGF activator and trypsin. The N-terminal Kunitz domain (Kunitz I) had potent inhibitory activity against both HGF activator and trypsin, whereas the C-terminal Kunitz domain (Kunitz II) had only very weak inhibitory activity against HGF activator, although its potency against trypsin was equivalent to that of Kunitz I. These results indicate that Kunitz I is the functional domain of HAI-1 for inhibiting the HGF-converting activity of HGF activator. Furthermore, the presence of two Kunitz domains affected the inhibitory activity of HAI-1 against HGF activator, and it showed a similar, but not additive, level of inhibitory activity against trypsin when compared with that of the individual Kunitz domains. These results suggest that serine protease binding sites of Kunitz I and Kunitz II are located close to each other and that proteolytic processing to generate HAI-1 with only one Kunitz domain regulates the activity of HAI-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号