首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of Water Stress on Fruit Quality Attributes of Kiwifruit   总被引:5,自引:0,他引:5  
Four-year-old kiwifruit vines (Actinidia deliciosa(A. Chev.)C. F. Liang et A. R. Ferguson var.deliciosacv. Hayward) werestudied to determine response of the plant and effects on fruitquality when irrigation water was withheld either early or latein the growing season. The greatest effect on fruit growth occurredwhen water was withheld early in the season. Harvest weightof fruit from early-stressed vines was approx. 25% less thanthe weight of fruit on control vines. Early season water stressresulted in a transient increase in concentrations of solublecarbohydrates in both leaves and fruit. This was accompaniedby a reduction in stomatal conductance of the leaves. Starchlevels in leaves but not fruit were reduced by both stress treatments.Concentrations of sucrose at harvest in fruit from vines stressedlate in the season were markedly higher than in other fruit,and softness of the fruit was unaffected. These differenceswere maintained through the 12 weeks in cool storage after harvest.Withholding irrigation water to kiwifruit vines late in theseason may prove a useful management tool to manipulate somequality attributes of the fruit.Copyright 1998 Annals of BotanyCompany Kiwifruit;Actinidia deliciosa; water stress; fruit quality; soluble solids.  相似文献   

2.
Buckwheat (Fagopyrum esculentum Moench. cv Jianxi) is highly resistant to Al stress and is known to be an Al-accumulator. Pot experiments were carried out in a greenhouse to investigate the accumulation of Al in leaves and seeds of buckwheat. Plants were grown for 12 weeks in a strong acid soil amended with or without CaCO3 at a rate of 1 g kg−1 soil. Old leaves accumulated as much as 10 g kg−1 Al of dry weight when the plants were grown in the acid soil, while the Al concentrations in leaves immediately adjacent to seeds, seed coats, and embryos were, on average, 4516, 41.2 and 7.7 mg kg−1, respectively. The Al concentration significantly decreased in leaves when the plants were grown in the limed soil, and the Al concentrations in leaves immediately adjacent to seeds, seed coats, and embryos were, on average, 1586, 21.3 and 3.1 mg kg−1, respectively. These results show that seeds accumulate much less Al than buckwheat leaves. The underlying mechanisms are discussed. Section Editor: H. Lambers  相似文献   

3.
Parks  S.E.  Haigh  A.M.  Cresswell  G.C. 《Plant and Soil》2000,227(1-2):59-65
The effects of P fertilizer rate on shoot growth and the total P concentration of the whole shoot, new and mature leaves, symptom leaves and stems of Banksia ericifolia L. f., a P-sensitive species, were investigated in a six month greenhouse pot experiment. Shoot dry weight of plants growing in an Australian sedge peat, coarse sand and perlite potting mix (1:1:1) increased with up to 100 mg P L−1 supplied as a six month controlled release P (0:18:0) fertilizer, but was reduced by toxicity at the highest application rate (200 mg P L−1). Plants receiving this treatment developed chlorotic new and mature leaves. Leaf symptoms observed at rates of 60–100 mg P L−1 were confined to old leaves and were related to the P concentration of the shoot. Growth was not affected at these rates. The P concentration of stems was strongly influenced by P supply. This tissue acted as a sink for excess P, helping to regulate the P concentration of leaves. The approximate range of P concentrations in stem tissue, associated with greater than 90% of maximum shoot dry weight, was 0.5–1.5 g P kg−1 tissue dry weight. This was greater than that calculated for mature leaves (0.5–0.8 g kg−1) or for whole shoots (0.5–1.2 g kg−1). This wider range, and the capacity to store P in excess to requirement, makes the stem a better index tissue for plant P status than either leaves or whole shoots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The development and effects of nitrogen (N) deficiency in kiwifruit (Actinidia deliciosa Hayward) vines planted at three densities (25.0, 12.5 and 8.33 m2 vine–1) were examined in a long term (1982 to 1989) field experiment in which N was applied at rates from 0 to 200 kg N ha–1 year–1. The rate of applied N significantly affected leaf N concentrations every year from 1985 onwards, and the average leaf N concentrations declined throughout the experiment. Fruit N concentrations varied significantly with the level of applied N as early as 1986. The average fruit N concentrations varied strongly between years, and were inversely proportional to the fruit number (per m2), indicating that, after fruit set, growth of individual fruit was relatively insensitive to the vine N status. Effects of N supply on fruit yields resulted mostly from changes in fruit number (per m2). For vines planted at the high density, fruit yields responded significantly to the level of applied N each season from 1986 onwards. In any year, maximum fruit yields for vines planted at the high density were associated with leaf N concentrations (20 weeks after bud burst) of at least 1.8 mmol g–1. For vines planted at low density, significant yield responses to the level of applied N were not recorded until 1988, and maximum yields in that year were associated with leaf N concentrations of at least 1.4 mmol g–1. The delayed expression of effects of N deficiency on fruit yields for vines planted at low density appeared to follow a shift in partitioning of resources in favour of fruit growth. This shift in partitioning did not appear to be sustainable, and by 1989 the fruit yield response to applied N continued to the highest N level tested. In that year, the leaf N concentration associated with maximum yield was 1.8 mmol g–1, the same as that recorded throughout the experiment for the vines planted at high density. In the last two seasons of the experiment, leaf necrosis developed extensively on vines receiving less than the highest rate of N. This necrosis appeared to be premature senescence resulting from N deficiency. Leaf chloride (Cl) concentrations increased significantly with increasing severity of N deficiency, but were never more than those associated with Cl toxicity. While N supply significantly affected fruit firmness immediately post-harvest, there were no significant effects on fruit firmness after 12–20 weeks storage.  相似文献   

5.
6.
Abstract. The role of phosphorus (P) in leaf magnesium (Mg) concentrations and photosynthesis was investigated in field and glasshouse experiments with grapevine (Vitis vinifera L., cvs. Chenin blane. Chardonnay, and Carignane). In the field, leaves of vines growing on soil with low available P exhibited symptoms of Mg deficiency and had low P and Mg concentrations. The rate of photosynthesis for leaves of untreated control vines was approximately 0.7 nmol CO2 cm 2 s 1. When P fertilizer was applied to the soil, Mg deficiency symptoms were eliminated, and leaf P and Mg concentrations increased to above critical levels. When Mg was applied as a foliar spray, leaf Mg increased to above critical levels, but leaf P did not change significantly. In both experiments, the rate of photosynthesis increased to greater than 1.0 nmol CO2 cm 2 s 1 after nutrient applications. Thus, under low soil P conditions, leaf photosynthesis was limited by leaf Mg concentrations. In glasshouse experiments in which vines were grown with and without P for three seasons, Mg accumulated in large roots of - P vines to approximately twice the concentration found in roots of + P vines. Analysis of the xylem exudate from detopped plants showed that Mg concentration in xylem sap of + P vines was twice as great as that in - P vines. When P was supplied to - P vines, the concentration of Mg increased to the concentration of + P vines within 2 days. The results show that the translocation of Mg from roots to shoots of grapevine is dependent upon P supply to the roots and suggest that Mg translocation is more sensitive than uptake to P supply.  相似文献   

7.
Gross photosynthesis and respiration rates of leaves at different canopy heights in a Rhizophora stylosa Griff. stand were measured monthly over 1 year at Manko Wetland, Okinawa Island, Japan, which is the northern limit of its distribution. The light-saturated net photosynthesis rate for the leaves at the top of the canopy showed a maximum value of 17 μmol CO2 m−2 s−1 in warm season and a minimum value of 6 μmol CO2 m−2 s−1 in cold season. The light-saturated gross photosynthesis and dark respiration rates of the leaves existing at the top of the canopy were 2−7 times and 3–16 times, respectively, those of leaves at the bottom of the canopy throughout the year. The light compensation point of leaves showed maximum and minimum peaks in warm season and cold season, respectively. The annual canopy gross photosynthesis, foliage respiration, and surplus production were estimated as 117, 49, and 68 t CO2 ha−1 year−1, respectively. The energy efficiency of the annual canopy gross photosynthesis was 2.5%. The gross primary production GPP fell near the regression curve of GPP on the product of leaf area index and warmth index, the regression curve which was established for forests in the Western Pacific with humid climates.  相似文献   

8.
The influence of 5-aminolevulinic acid (ALA) on the growth, photosynthesis, and fruit quality of gibberellin-induced seedless 2-year-old “Delaware“ grapevine was examined. The result of soil treatment (0.1–10 mg l−1) and foliar spray treatment (30–300 mg l−1) with ALA after flowering was significant growth improvement, up to 55% in the lateral shoot, and up to 38% in leaf area. Optimal doses were 1 mg l−1 soil treatment and 100 mg l−1 foliar treatment. The photosynthetic rate of plants treated with ALA increased by a significant 9.2%–22.5%. Relative to the control, based on measurements of the 5th leaf of each shoot in the ripening period, the optimum concentrations for growth and photosynthesis enhancement in grapevines were 100 mg l−1 (foliar treatment) and 1 mg l−1 (soil treatment). Total plant weight at harvest increased a significant 13% at the optimal treatment doses. In terms of fruit quality, the cluster fresh weight increased a significant 44.9%–53% and fruit colour showed a tendency to become darker in all plants treated with ALA. The °Brix value in the plant treated with 100 mg l−1 ALA was a significant 2.7% higher than that of the control. We consider that leaf area and photosynthetic rates during cultivation are important for the acquisition of photoassimilates and that these are likely to be causally associated with improvement of total dry weight and advance of fruit quality. In addition, a possibility of advancing the harvest time of grapes by ALA treatment was shown.  相似文献   

9.
Tesfay Teklay 《Plant and Soil》2004,267(1-2):297-307
Foliar inputs from indigenous agroforestry trees and shrubs could provide sufficient nutrients and organic matter to sustain crop growth. However, concentrations of foliar nutrients and organic constituents show considerable seasonal, inter- and/or intra-species variations. To determine this variability, green and senesced leaves were sampled during dry and wet seasons from Cordia africana, Albizia gummifera and Milletia ferruginea trees at Wondo Genet, southern Ethiopia. Cordia is a deciduous, non-leguminous tree, while Albizia and Milletia are semi-deciduous and leguminous trees. Leaves were analyzed for concentrations of ash, N, P, K, cellulose, lignin, soluble polyphenols, and condensed tannins. Results from statistical analyses showed significant seasonal variations (P < 0.001) in concentrations of all leaf constituents, except for P and cellulose. Foliar concentrations of ash, N, soluble polyphenols, and condensed tannins were higher during the wet season while those of K and lignin were higher during the dry season. Green leaves had significantly higher (p < 0.001) N and P concentrations than senesced leaves, while senesced leaves had higher concentrations of K, cellulose, soluble polyphenols, and condensed tannins. The ‘ Relative Percentage Changes’ in concentration of N and P in senesced leaves, i.e., their enrichment or depletion with such nutrients relative to those in green leaves, were significantly higher (P < 0.001) for Cordia than Albizia and Milletia. On the other hand, there was no consistent pattern in the enrichment or depletion of senesced leaves with organic constituents, but these leaves were in most cases more enriched with organic constituents than green leaves. Over all, the percentage depletion or enrichment ranged from about 8% to 38% for N; 24% to 63% for P; −141% to 48% for K; −44% to 15% for cellulose; −44% to 51% for lignin; −203% to −61% for soluble polyphenols; and −290% to 11% for condensed tannins. It was concluded that variations in species and life-form (legume versus non-legume), season, and developmental stage of leaves could affect the quality of organic material from agroforestry species, which has important implications for management of organic residues in tropical agricultural systems.  相似文献   

10.
In vitro zygotic and somatic embryogenesis protocols rely on nutrient and hormone levels from media to satisfy the physiological and developmental requirements of embryony. To better understand these requirements for cotton, we quantified levels of major and minor elements, carbohydrates, NH4 +, free amino acids and six hormones in whole cotton ovules (with fibers removed), nucelli (ovules with integuments removed), or ovule fluid (extracted from the endosperm region). Samples were collected from field-grown cotton at 1–18 days-past-anthesis (DPA) during each of three growing seasons. Replication across 2 years was obtained for carbohydrates, NH4 +, free amino acids and hormones from nucellus samples. The year effect was large primarily for hormones only. The most abundant minerals across tissue types and years were K, P, Mg and S. Potassium was the most abundant at 260, 600 and 1,660 mmol kg−1 dry mass (DM) in nucelli, whole ovules and ovule fluid, respectively. Magnesium, Ca, Zn and Mn levels were 2–8-fold higher in ovule fluid compared to whole ovules or nucelli. In the free amino acid plus NH4 + category, NH4 +, alanine, serine, glycine, asparagine (plus aspartic acid), glutamine (plus glutamic acid), leucine, threonine and arginine predominated in nucelli and ovule fluid, and levels tended to be higher in the older samples across years and tissue types. Fructose and glucose levels also increased with age with very high levels being found in late DPA ovule fluid. Arabinose, inositol and melibiose were also prominent sugars. Indole-3-acetic acid levels were similar between nucelli and ovule fluid and ranged from 10 to 80 μmol kg−1 DM. An abscisic acid spike, from 15 to 400 μmol kg−1 DM, occurred in nucelli and whole ovules from 2 to 8 DPA. Thereafter, abscisic acid levels remained between 5 and 10 μmol kg−1 DM. Zeatin and zeatin riboside were the most abundant cytokinins, and levels of these hormones fluctuated between 1 and 4 μmol kg−1 DM in both nucelli and ovule fluid.  相似文献   

11.
A crown rot disease in wheat caused by the fungusFusarium graminearum Schw. Group 1 is a widespread problem in chronically Zn-deficient Australian soils. A link between crown rot and Zn deficiency was established by Sparrow and Graham (1988). This paper reports a test of a further hypothesis, that wheat genotypes more efficient at extracting zinc from low-zinc soils are more resistant to infection by this pathogen. Three wheat cultivars (Excalibur, Songlen and Durati) of differential Zn efficiency were tested at three zinc levels (0.05, 0.5 and 2.0 mg Zn kg−1 of soil) and three levels ofF. graminearum S. Group 1 inoculum (0.1 g and 0.3 g kg−1 live chaff-inoculum and control having 0.1 g kg−1 dead chaff inoculum). Six weeks after sowing dry matter production of shoots and roots was decreased byFusarium inoculation at 0.05 mg and 0.5 mg kg−1 applied Zn.Fusarium inoculum at 0.1 g was as effective as 0.3 g kg−1 for infection and decreasing dry matter. The infection at the basal part of culm decreased significantly by increasing the rate of Zn application. Excalibur, a Zn-efficient cultivar (tolerant to Zn deficiency) produced significantly more shoot and root dry matter, and showed less disease infection compared with Zn-inefficient cultivars (Durati and Songlen) at low (0.05 mg Zn kg−1 soil) and medium (0.5 mg Zn kg−1 soil) Zn fertilization rates. Higher rate of Zn fertilization (2.0 mg Zn kg−1 soil) reduced the disease level in Durati to the level of Excalibur but the disease level of Songlen was still high, indicating its high Zn requirement and or sensitivity to crown rot. The data on Zn uptake show that Excalibur, being Zn-efficient, was able to scavenge enough Zn from Zn-deficient soil, we suggest that besides sustaining growth Excalibur was able to build and maintain resistance to the pathogen; inefficient cultivars needed extra Zn fertilization to achieve performance comparable to that of Excalibur. The present study indicates that growing Zn-efficient cultivars of wheat along with judicious use of Zn fertilizer in Zn-deficient areas where crown rot is a problem may sustain wheat production by reducing the severity of the disease as well as by increasing the plant vigour through improved Zn nutrition. ei]Section editor: R Rodriques-Kalana  相似文献   

12.
Spatial distribution patterns of arsenic (As) in the tissues of a lesser-known As hyperaccumulating fern Pityrogramma calomelanos (L.) Link var. austroamericana (Domin) Farw. (Pteridaceae) have been studied. Quantitative micro-proton-induced X-ray emission (micro-PIXE) spectroscopy was employed to examine As localization in pinnule and stipe cross-sections of this species. In addition, As hyperaccumulation status of P. calomelanos var. austroamericana was compared with the well-known As hyperaccumulating fern Pteris vittata L. Both species were grown in pots under controlled conditions and exposed to four levels of As (0–500 mg As kg−1) for 20 weeks. Pityrogramma calomelanos var. austroamericana accumulated up to 16 415 mg As kg−1 dry weight (DW), however, phytotoxicity symptoms such as necrotic pinnule tips and margins, appeared in fronds with concentrations >3,008 mg As kg−1 DW. Arsenic was readily translocated to fronds, with concentrations up to 75 times greater in fronds than in roots. Quantitative elemental maps of As generated using micro-PIXE analysis revealed that As concentrations in pinnule cross-sections were higher than in stipe cross-sections with concentrations of 3.7 × 103 and 1.6 × 103 mg As kg−1 DW, respectively (as determined by region selection analysis; RSA). In pinnules, RSA revealed variable concentrations of As, however did not resolve a clear pattern of compartmentalization across different anatomical regions. In stipe tissues, As concentrations followed the order vascular bundle > cortex > epidermis (as determined by RSA). Our results show that P. calomelanos var. austroamericana is an As hyperaccumulator and has the potential for use in phytoremediation of soils with low levels (up to 50 mg kg−1) of As contamination.  相似文献   

13.
Natural Occurrence of Mycotoxins in Staple Cereals from Ethiopia   总被引:1,自引:0,他引:1  
The occurrence of mycotoxins in barley, sorghum, teff (Eragrostis tef) and wheat from Ethiopia has been studied. Samples were analyzed for aflatoxin B1 (AFB1), ochratoxin A (OTA), deoxynivalenol (DON), nivalenol (NIV) and zearalenone (ZEN) using high performance liquid chromatography (HPLC) and for fumonisins (FUM) using enzyme linked immunosorbent assay (ELISA). AFB1 and OTA were detected in samples of all the four crops. AFB1 was detected in 8.8% of the 352 samples analyzed at concentrations ranging from trace to 26 μg kg−1. OTA occurred in 24.3% of 321 samples at a mean concentration of 54.1 μg kg−1 and a maximum of 2106 μg kg−1. DON occurred in barley, sorghum and wheat at 40–2340 μg kg−1 with an overall incidence of 48.8% among the 84 mainly ‘suspect’ samples analyzed; NIV was co-analyzed with DON and was detected at 40 μg kg−1 in a wheat sample and at 50, 380, and 490 μg kg−1 in three sorghum samples. FUM and ZEN occurred only in sorghum samples with low frequencies at concentrations reaching 2117 and 32 μg kg−1, respectively. The analytical results indicate higher mycotoxin contamination in sorghum, which could be related to the widespread storage of sorghum grain in underground pits leading to elevated seed moisture contents. This is the first report on the occurrence of OTA in teff.  相似文献   

14.
B. Dell 《Plant and Soil》1994,167(2):181-187
A glasshouse experiment was conducted to define the response of Eucalyptus maculata seedlings to the addition of nine rates of copper (Cu) to a Cu-deficient sand. Plants were harvested 128 days from sowing. Symptoms of Cu deficiency included marginal necrosis in young fully expanded leaves (YFEL), deformed leaf margins, death of lateral shoots, bleeding at nodes on the main stem and reduced lignification of xylem fibres and vessels. Plant height and the number of nodes on the main stem were unaffected. In plants supplied with 0 Cu, whole top and root fresh weights were depressed by 27% and 32% respectively. The external Cu requirement for maximum growth of E. maculata seedlings was similar to that for wheat grown in the same soil. In Cu-adequate plants, leaf Cu concentrations decreased with distance from the shoot apex. Cu levels in stems varied little with position and were similar to the YFEL. Cu concentrations in leaves and stems were depressed in Cu-deficient plants to <1.0 g g–1 dry weight (d.w.) (roots: 1.5 g g–1 d.w.). The external Cu supply did not greatly alter the distribution of Cu within the plant. Young leaves at the shoot tip are recommended for diagnosis of Cu deficiency: critical values for shoot d.w. were about 1.5 g Cu g–1 d.w. Lignification of wood was suppressed where Cu concentrations fell below 1.5 g g–1 d.w.: the Bussler test for lignification would thus be a valuable indicator of Cu deficiency.  相似文献   

15.
This study examines the heterogeneity of the Mn-hyperaccumulative trait in natural stands of the Australian rainforest tree species Gossia bidwillii (Myrtaceae). It is the only known Mn hyperaccumulator from Australia, and has an unusual spatial distribution of Mn in its leaves. G. bidwillii occurs naturally on a range of Mn-containing substrates including ultramafic soils. Leaf samples were collected from individual trees and four small stands, over a longitudinal range of ∼600 km. While no variation in the spatial distribution of foliar Mn was detected, considerable variation in Mn concentration was found. G. bidwillii was shown to accumulate Mn when growing on a variety of substrates, and dry weight (DW) foliar Mn concentrations of all trees sampled ranged between 2,740 and 27,470 μg g−1. The majority of samples exceeded 10,000 μg g−1, the threshold value for Mn hyperaccumulation. The overall frequency distribution of foliar Mn concentration was found to be bimodal, with a small outlier of extreme hyperaccumulators. Highest values were obtained from trees growing on a basaltic krasnozem clay, not ultramafic soil. Soil Mn concentrations were measured, and no relationship was found between foliar Mn concentrations and extractable Mn concentrations in host substrates. Some of the variation in the Mn-hyperaccumulative trait in G. bidwillii throughout its large natural distribution may reflect the unresolved taxonomy of this most widespread species in the genus Gossia. Ability to hyperaccumulate Mn may serve as an additional diagnostic tool for resolving this taxonomy.  相似文献   

16.
Seasonal changes in nitrate and ammonium concentrations were studied inCynodon dactylon (L.) Pers. plants grown for one year in the field in a Mediterranean area. Plants cultivated in a sandy loam soil were fertilized with nitrate-N or ammonium-N at two application rates (250 and 1000 kg N ha−1 year−1) and compared to controls with no added N. Plots were harvested every three weeks from May to November. Shoots were separated into leaves and stems and analyses carried out in both fractions. Nitrogen applications generally led to elevated nitrate concentrations both in leaves and stems at all sampling dates but had little influence on the ammonium concentrations of the tissues. Higher nitrate and ammonium concentrations were found in stems than in leaves, although no levels higher than 0.22% NO 3 −N and 0.10% NH 4 + −N were detected in either fraction. Nitrate tended to accumulate mostly in autumn and spring whereas low accumulations were found in summer. Ammonium showed both in leaves and stems a progressive but limited accumulation throughout the period with a peak in October, followed by a strong decrease in November.  相似文献   

17.
Glasshouse experiments were conducted to evaluate the influence of L-methionine (L-MET) and L-ethionine (L-ETH) added to soil on the growth of corn (Zea mays L.) and tomato (Lycopersicon esculentum), respectively. The application of L-MET and L-ETH stimulated C2H4 production in soil by 299- and 313-fold, respectively, over an unamended control. An L-MET treatment of 1.85 mg kg−1 soil was the most effective in increasing shoot height, shoot fresh weight, internodal distance, and stem diameter in two corn cultivars, Kandy Korn and Miracle, while shoot and root dry weights, leaf width, uppermost leaf collar base distance and resistance to stem breaking were increased in the case of Kandy Korn only. A significant epinastic response was observed in the second and third leaves of tomato plants when soil was treated with L-ETH. An L-ETH treatment of 0.2 mg kg−1 soil resulted in the maximum fresh fruit yield, while 0.02 and 2.0 mg kg−1 gave the most fruit and greater average weight of fresh fruit, respectively. Concentrations ranging from 0.002 to 2.0 mg L-ETH kg−1 soil initiated early fruit formation. Early fruit ripening was observed with an application rate of 20 mg L-ETH kg−1 soil. The mechanism of action of these chemicals could either be attributed to i) substrate-dependent C2H4 production in soil by the indigenous microflora, ii) uptake directly by plant roots followed by metabolism within the tissues, and/or iii) a change in the balance of rhizosphere microflora affecting plant growth.  相似文献   

18.
Eva Ritter 《Plant and Soil》2007,295(1-2):239-251
Afforestation has become an important tool for soil protection and land reclamation in Iceland. Nevertheless, the harsh climate and degraded soils are growth-limiting for trees, and little is know about changes in soil nutrients in maturing forests planted on the volcanic soils. In the present chronosequence study, changes in C, N and total P in soil (0–10 and 10–20 cm depth) and C and N in foliar tissue were investigated in stands of native Downy birch (Betula pubescens Enrh.) and the in Iceland introduced Siberian larch (Larix sibirica Ledeb.). The forest stands were between 14 and 97 years old and were established on heath land that had been treeless for centuries. Soils were Andosols derived from basaltic material and rhyolitic volcanic ash. A significant effect of tree species was only found for the N content in foliar tissue. Foliar N concentrations were significantly higher and foliar C/N ratios significantly lower in larch needles than in birch leaves. There was no effect of stand age. Changes in soil C and the soil nutrient status with time after afforestation were little significant. Soil C concentrations in 0–10 cm depth in forest stands older than 30 years were significantly higher than in heath land and forest stands younger than 30 years. This was attributed to a slow accumulation of organic matter. Soil N concentrations and soil Ptot were not affected by stand age. Nutrient pools in the two soil layers were calculated for an average weight of soil material (400 Mg soil ha−1 in 0–10 cm depth and 600 Mg soil ha−1 in 10–20 cm depth, respectively). Soil nutrient pools did not change significantly with time. Soil C pools were in average 23.6 Mg ha−1 in the upper soil layer and 16.9 Mg ha−1 in the lower soil layer. The highest annual increase in soil C under forest compared to heath land was 0.23 Mg C ha−1 year−1 in 0–10 cm depth calculated for the 53-year-old larch stand. Soil N pools were in average 1.0 Mg N ha−1 in both soil layers and did not decrease with time despite a low N deposition and the uptake and accumulation of N in biomass of the growing trees. Soil Ptot pools were in average 220 and 320 kg P ha−1 in the upper and lower soil layer, respectively. It was assumed that mycorrhizal fungi present in the stands had an influence on the availability of N and P to the trees. Responsible Editor: Hans Lambers.  相似文献   

19.
We investigated seasonal changes in dry mass and CO2 exchange rate in fruit and leaves of the evergreen tree Cinnamomum camphora with the aim of quantitatively determining the translocation balance between the two organs. The fruit dry mass growth peaked in both August and October: the first increase was due to fruit pulp development and the second to seed development. Fruit respiration also increased with the rapid increase in fruit dry mass. Therefore, the carbohydrates required for fruit development showed two peaks during the reproductive period. Fruit photosynthesis was relatively high in early August, when fruit potentially re-fixed 75% of respired CO2, indicating that fruit photosynthesis contributed 15–35% of the carbon requirement for fruit respiration. Current-year leaves completed their growth in June when fruit growth began. Current-year leaves translocated carbohydrates at a rate of approximately 10–25 mg dry weight (dw) leaf−1 day−1 into other organs throughout the entire fruit growth period. This rate of translocation from current-year leaves was much higher than the amount of carbohydrate required for reproduction (ca. 3 mg dw fruit−1 day−1). Given the carbon balance between fruit and current-year leaves, carbohydrates for reproduction were produced within the current-year fruit-bearing shoots. C. camphora would be adaptive for steadily supplying enough amount of carbohydrate to the fruits, as there was little competition for carbohydrates between the two organs. As assimilates by leaves are used for processes such as reproduction and the formation of new shoots, photosynthesis by reproductive organs is considered to be important to compensate for reproductive cost.  相似文献   

20.
The paper describes the biomass and productivity of maple (Acer cappadocicum) forest occurring at an altitude of 2,750 m in the west central Himalayas. Total vegetation biomass was 308.3 t ha−1, of which the tree layer contributed the most, followed by herbs and shrubs. The seasonal forest-floor litter mass varied between 5.4 t ha−1 (in rainy season) and 6.6 t ha−1 (in winter season). The annual litter fall was 6.2 t ha−1, of which leaf litter contributed the largest part (59% of the total litter fall). Net primary productivity of total vegetation was 19.5 t ha−1 year−1. The production efficiency of leaves (net primary productivity/leaf mass) was markedly higher (2.9 g g−1 foliage mass year−1) than those of the low-altitude forests of the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号