首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nitrophorins are a family of proteins that use ferric heme to transport nitric oxide (NO) from the salivary glands of blood-sucking insects to their victims, resulting in vasodilation and reduced blood coagulation. We have refined atomic resolution structures of nitrophorin 4 (NP4) from Rhodnius prolixus complexed with NO (1.08 A) and NH(3) (1.15 A), yielding a highly detailed picture of the iron coordination sphere. In NP4-NO, the NO nitrogen is coordinated to iron (Fe-N distance = 1.66 A) and is somewhat bent (Fe-N-O angle = 156 degrees ), with bending occurring in the same plane as the proximal histidine ring. The Fe(NO)(heme)(His) coordination geometry is unusual but consistent with an Fe(III) oxidation state that is stabilized by a highly ruffled heme. Heme ruffling occurs in both structures, apparently due to close contacts between the heme and leucines 123 and 133, but increases on binding NO even though the steric contacts have not changed. We also report the structure of NP4 in complexes with histamine (1.50 A) and imidazole (1.27 A). Unexpectedly, two mobile loops that rearrange to pack against the bound NO in NP4-NO, also rearrange in the NP4-imidazole complex. This conformational change is apparently driven by the nonpolar nature of the NO and imidazole (as bound) ligands. Taken together, the desolvation of the NO binding pocket through a change in protein conformation, and the bending of the NO moiety, possibly through protein-assisted heme ruffling, may lead to a nitrosyl-heme complex that is unusually resistant to autoreduction.  相似文献   

2.
Microbial cytochromes c' contain a 5-coordinate His-ligated heme that forms stable adducts with nitric oxide (NO) and carbon monoxide (CO), but not with dioxygen. We report the 1.95 and 1.35 A resolution crystal structures of the CO- and NO-bound forms of the reduced protein from Alcaligenes xylosoxidans. NO disrupts the His-Fe bond and binds in a novel mode to the proximal face of the heme, giving a 5-coordinate species. In contrast, CO binds 6-coordinate on the distal side. A second CO molecule, not bound to the heme, is located in the proximal pocket. Since the unusual spectroscopic properties of cytochromes c' are shared by soluble guanylate cyclase (sGC), our findings have potential implications for the activation of sGC induced by the binding of NO or CO to the heme domain.  相似文献   

3.
Nitrophorin 2 (NP2) (also known as prolixin-S) is a salivary protein that transports nitric oxide, binds histamine, and acts as an anticoagulant during blood feeding by the insect Rhodnius prolixus. The 2.0-A crystal structure of NP2 reveals an eight-stranded antiparallel beta-barrel containing a ferric heme coordinated through His(57), similar to the structures of NP1 and NP4. All four Rhodnius nitrophorins transport NO and sequester histamine through heme binding, but only NP2 acts as an anticoagulant. Here, we demonstrate that recombinant NP2, but not recombinant NP1 or NP4, is a potent anticoagulant; recombinant NP3 also displays minor activity. Comparison of the nitrophorin structures suggests that a surface region near the C terminus and the loops between beta strands B-C and E-F is responsible for the anticoagulant activity. NP2 also displays larger NO association rates and smaller dissociation rates than NP1 and NP4, which may result from a more open and more hydrophobic distal pocket, allowing more rapid solvent reorganization on ligand binding. The NP2 protein core differs from NP1 and NP4 in that buried Glu(53), which allows for larger NO release rates when deprotonated, hydrogen bonds to invariant Tyr(81). Surprisingly, this tyrosine lies on the protein surface in NP1 and NP4.  相似文献   

4.
Maes EM  Roberts SA  Weichsel A  Montfort WR 《Biochemistry》2005,44(38):12690-12699
Nitrophorin 4 (NP4), a nitric oxide (NO)-transport protein from the blood-sucking insect Rhodnius prolixus, uses a ferric (Fe3+) heme to deliver NO to its victims. NO binding to NP4 induces a large conformational change and complete desolvation of the distal pocket. The heme is markedly nonplanar, displaying a ruffling distortion postulated to contribute to stabilization of the ferric iron. Here, we report the ferrous (Fe2+) complexes of NP4 with NO, CO, and H2O formed after chemical reduction of the protein and the characterization of these complexes by absorption spectroscopy, flash photolysis, and ultrahigh-resolution crystallography (resolutions vary from 0.9 to 1.08 A). The absorption spectra, both in solution and in the crystal, are typical for six-coordinated ferrous complexes. Closure and desolvation of the distal pocket occurs upon binding CO or NO to the iron regardless of the heme oxidation state, confirming that the conformational change is driven by distal ligand polarity. The degree of heme ruffling is coupled to the nature of the ligand and the iron oxidation state in the following order: (Fe3+)-NO > (Fe2+)-NO > (Fe2+)-CO > (Fe3+)-H2O > (Fe2+)-H2O. The ferrous coordination geometry is as expected, except for the proximal histidine bond, which is shorter than typically found in model compounds. These data are consistent with heme ruffling and coordination geometry serving to stabilize the ferric state of the nitrophorins, a requirement for their physiological function. Possible roles for heme distortion and NO bending in heme protein function are discussed.  相似文献   

5.
Rhodnius prolixus is a blood feeding triatomine bug that contains salivary nitric oxide bound to hemoproteins previously named nitrophorins. Nitrophorins, in addition to storing and transporting NO, have two other functions such as anti-histaminic and anti-clotting (displayed by nitrophorin 2 only). Additionally, nitrophorins display a thiol oxidase reaction, where cysteine is oxidized to cystine with the production of hydrogen peroxide. In this paper the heme-peroxidase reaction of nitrophorins is described. The heme moiety of nitrophorins is destroyed by addition of cysteine or hydrogen peroxide. No biliverdin is produced during this reaction. We have also found that during the thiol oxidase reaction, nitrophorins can destroy norepinephrine, conferring an additional vasodilatory competence for this class of salivary molecules.  相似文献   

6.
Nitrophorins 1-4 (NP1-4) are ferriheme proteins from the blood-sucking insect Rhodnius prolixus that transport nitric oxide (NO) to the victim, sequester histamine, and inhibit blood coagulation. Here, we report kinetic and thermodynamic analyses for ligand binding by all four proteins and their reduction potentials. All four undergo biphasic association and dissociation reactions with NO. The initial association is fast (1.5-33 microM(-)(1) s(-)(1)) and similar to that of elephant metmyoglobin. However, unlike in metmyoglobin, a slower second phase follows ( approximately 50 s(-)(1)), and the stabilized final complexes are resistant to autoreduction (E degrees = +3 to +154 mV vs normal hydrogen electrode). NO dissociation begins with a slow, pH-dependent step (0.02-1.4 s(-)(1)), followed by a faster phase that is again similar to that of metmyoglobin (3-52 s(-)(1)). The equilibrium dissociation constants are quite small (1-850 nM). NP1 and NP4 display larger release rate constants and smaller association rate constants than NP2 and NP3, leading to values for K(d) that are about 10-fold greater. The results are discussed in light of the recent crystal structures of NP1, NP2, and NP4, which display open, polar distal pockets, and of NP4-NO, which displays an NO-induced conformational change that leads to expulsion of solvent and complete burial of the NO ligand in a now nonpolar distal pocket. Taken together, the results suggest that tighter NO binding in the nitrophorins is due to the trapping of the molecule in a nonpolar distal pocket rather than through formation of particularly strong Fe-NO or hydrogen bonds.  相似文献   

7.
A number of ferriheme proteins, termed nitrophorins (NPs), occur in the saliva of the bloodsucking insect Rhodnius prolixus ('kissing bug'), which is a vector for Chagas' disease. Nitrophorins bind the heme b cofactor in the beta-barrel of their lipocalin fold, which is further anchored through a proximal histidine-Fe(III) bond. The distal Fe(III) coordination site then binds nitric oxide (NO) for delivery into a host's tissues during blood feeding, where, upon NO release, the distal Fe(III) site acts as a histamine trap to delay the victim's immune response. Previously, four nitrophorins from R. prolixus, NP1 to NP4, have been extensively characterized. Recently, another nitrophorin, NP7, was discovered in a cDNA library derived from the same insect. Among the R. prolixus nitrophorins, NP7 was found to be unique in its ability to bind to negatively charged cell surfaces. However, the yield of functional recombinant NP7 was rather low when the established protocol for NP1-4 was followed. Here, we report on a novel expression and reconstitution method for NP7 that yields sufficient amounts of pure protein for extensive characterization (28-fold increase). This method may prove useful for the reconstitution of other proteins with a lipocalin fold.  相似文献   

8.
Previously, we utilized 4-iodopyrazole (4IPzH) as a heavy atom derivative for the initial solution of the crystal structure of the nitrophorin from Rhodnius prolixus, NP1, where it was found to bind to the heme with the iodo group disordered in two positions. We have now determined the structure of the 4IPzH complex of NP4 at pH 7.5 and find that the geometry and bond lengths at the iron center are extremely similar to those of the imidazole (ImH) complex of the same protein (structure determined at pH 5.6), except that the G–H loop is not in the closed conformation. 4IPzH binds to the heme of NP4 in an ordered manner, with the iodo substituent pointed toward the opening of the heme pocket, near the surface of the protein. In order to understand the solution chemistry in terms of the relative binding abilities of 4IPzH, ImH, and histamine (Hm, a physiological ligand for the nitrophorins), we have also investigated the equilibrium binding constants and reduction potentials of these three ligand complexes of the four Rhodnius nitrophorins as a function of pH. We have found that, unlike the other Lewis bases, 4IPzH forms less stable complexes with the Fe(III) than the Fe(II) oxidation states of NP1 and NP4, and similar stability for the two oxidation states of NP2 and NP3, suggesting that this ligand is a softer base than ImH or Hm, for both of which the Fe(III) complexes are more stable than those of Fe(II) for all four nitrophorins. Surprisingly, in spite of this and the much lower basicity of 4IPzH than imidazole and histamine, the EPR g-values of all three ligand complexes are very similar.Abbreviations NP1–4 nitrophorins 1–4 from Rhodnius prolixus - 4IPzH 4-iodopyrazole - ImH imidazole - Hm histamine - NO nitric oxide - NOS nitric oxide synthase  相似文献   

9.
Recombinant human myoglobin mutants with the distal histidine residue replaced by Leu, Val, or Gln residues have been prepared by site-directed mutagenesis and expression in Escherichia coli. The recombinant apomyoglobin proteins have been successfully reconstituted with cobaltous protoporphyrin IX to obtain cobalt myoglobin mutant proteins, and the role of the distal histidine residue on the interaction between the bound ligand and the myoglobin molecule has been studied by EPR spectroscopy. We found that the distal histidine residue is significant in the orientation of the bound oxygen molecule. Low temperature photolysis experiments on both oxy cobalt proteins and ferric nitric oxide complexes indicated that the nature of the photolyzed form depends on the steric crowding of the distal heme pocket. To our surprise, the distal Leu mutant has a less restricted, less sterically crowded distal heme pocket than that of the distal Val mutant myoglobin, despite the fact that Leu has a larger side chain volume than Val. Our results demonstrate that the distal heme pocket steric crowding is not necessarily related to the side chain volume of the E7 residue.  相似文献   

10.
In an effort to generate more stable reaction intermediates involved in substrate oxidation by nitric-oxide synthases (NOSs), we have cloned, expressed, and characterized a thermostable NOS homolog from the thermophilic bacterium Geobacillus stearothermophilus (gsNOS). As expected, gsNOS forms nitric oxide (NO) from l-arginine via the stable intermediate N-hydroxy l-arginine (NOHA). The addition of oxygen to ferrous gsNOS results in long-lived heme-oxy complexes in the presence (Soret peak 427 nm) and absence (Soret peak 413 nm) of substrates l-arginine and NOHA. The substrate-induced red shift correlates with hydrogen bonding between substrate and heme-bound oxygen resulting in conversion to a ferric heme-superoxy species. In single turnover experiments with NOHA, NO forms only in the presence of H(4)B. The crystal structure of gsNOS at 3.2 AA of resolution reveals great similarity to other known bacterial NOS structures, with the exception of differences in the distal heme pocket, close to the oxygen binding site. In particular, a Lys-356 (Bacillus subtilis NOS) to Arg-365 (gsNOS) substitution alters the conformation of a conserved Asp carboxylate, resulting in movement of an Ile residue toward the heme. Thus, a more constrained heme pocket may slow ligand dissociation and increase the lifetime of heme-bound oxygen to seconds at 4 degrees C. Similarly, the ferric-heme NO complex is also stabilized in gsNOS. The slow kinetics of gsNOS offer promise for studying downstream intermediates involved in substrate oxidation.  相似文献   

11.
Site-directed mutagenesis studies have shown that Asp140 in both human and rat heme oxygenase-1 is critical for enzyme activity. Here, we report the D140A mutant crystal structure in the Fe(III) and Fe(II) redox states as well as the Fe(II)-NO complex as a model for the Fe(II)-oxy complex. These structures are compared to the corresponding wild-type structures. The mutant and wild-type structures are very similar, except for the distal heme pocket solvent structure. In the Fe(III) D140A mutant one water molecule takes the place of the missing Asp140 carboxylate side-chain and a second water molecule, novel to the mutant, binds in the distal pocket. Upon reduction to the Fe(II) state, the distal helix running along one face of the heme moves closer to the heme in both the wild-type and mutant structures thus tightening the active site. NO binds to both the wild-type and mutant in a bent conformation that orients the NO O atom toward the alpha-meso heme carbon atom. A network of water molecules provides a H-bonded network to the NO ligand, suggesting a possible proton shuttle pathway required to activate dioxygen for catalysis. In the wild-type structure, Asp140 exhibits two conformations, suggesting a dynamic role for Asp140 in shuttling protons from bulk solvent via the water network to the iron-linked oxy complex. On the basis of these structures, we consider why the D140A mutant is inactive as a heme oxygenase but active as a peroxidase.  相似文献   

12.
The bacterial heme protein cytochrome ? from Alcaligenes xylosoxidans (AXCP) reacts with nitric oxide (NO) to form a 5-coordinate ferrous nitrosyl heme complex. The crystal structure of ferrous nitrosyl AXCP has previously revealed that NO is bound in an unprecedented manner on the proximal side of the heme. To understand how the protein structure of AXCP controls NO dynamics, we performed absorption and Raman time-resolved studies at the heme level as well as a molecular computational dynamics study at the entire protein structure level. We found that after NO dissociation from the heme iron, the structure of the proximal heme pocket of AXCP confines NO close to the iron so that an ultrafast (7 ps) and complete (99 +/- 1%) geminate rebinding occurs, whereas the proximal histidine does not rebind to the heme iron on the timescale of NO geminate rebinding. The distal side controls the initial NO binding, whereas the proximal heme pocket controls its release. These dynamic properties allow the trapping of NO within the protein core and represent an extreme behavior observed among heme proteins.  相似文献   

13.
14.
Soluble guanylate cyclases (sGCs) function as heme sensors that selectively bind nitric oxide (NO), triggering reactions essential to animal physiology. Recent discoveries place sGCs in the H-NOX family (heme nitric oxide/oxygen-binding domain), which includes bacterial proteins from aerobic and anaerobic organisms. Some H-NOX proteins tightly bind oxygen (O2), whereas others show no measurable affinity for O2, providing the basis for selective NO signaling in aerobic cells. Using a series of wild-type and mutant H-NOXs, we established a molecular basis for ligand discrimination. A distal pocket tyrosine is requisite for O2 binding in the H-NOX family. These data suggest that sGC uses a kinetic selection against O2; we propose that the O2 dissociation rate in the absence of this tyrosine is fast and that a stable O2 complex does not form.  相似文献   

15.
The nitrosyl complex of ferric myoglobin is EPR-silent. Upon photolysis at low temperatures, the photoinduced intermediates trapped in the distal heme cavity exhibit new EPR spectra due to the interaction between the photodissociated NO (S=1/2) and the ferric high spin heme (S=5/2). In order to elucidate the effect of distal E7 (His64) and E11 (Val68) mutations upon the electronic structure of the metal center, its immediate environment, and its interaction with the photodissociated NO, EPR spectra of the photoproducts of the NO complexes of recombinant ferric Mb mutants were measured at 5 K. EPR spectra of the photoproducts were closely related to the size and/or the polarity of the distal pocket residues. The distal pocket of the E7 mutants seemed to be sterically crowded, even decreasing the side chain volume or changing its hydrophobicity by replacing amino acid at position 64. We have found that the mobility of the photodissociated NO molecule in the distal heme pocket was strongly governed by the nature of the amino acid residue at E11 position.  相似文献   

16.
The nitrophorins from Rhodnius prolixus, the kissing bug, are heme-containing proteins used for the transport of nitric oxide to aide the insect in obtaining a blood meal. The Rhodnius nitrophorins display an eight-stranded antiparallel beta-barrel motif, typical of lipocalins, with a histidine-linked heme in the open end of the barrel. Heme is stabilized in the ferric state and highly distorted, displaying a ruffled conformation that may be of importance in the setting of the reduction potential. To help in understanding the means by which the protein matrix, an inherently soft material, is able to distort the heme from its low-energy planar conformation, we have determined the crystal structure of apo-nitrophorin 4-1.1 A resolution. Removal of the heme from nitrophorin 4 has very little effect on its structure: The heme binding cavity remains open and the loops near the cavity entrance respond to lower pH in the same manner as the intact protein. We conclude that the general stability of the lipocalin fold and apparent rigidity of the beta-barrel provide the means for distorting the heme cofactor.  相似文献   

17.
Flavohemoglobins (flavoHbs) are enzymes that operate primarily as nitric oxide dioxygenases and shuttle thereby electrons among NAD(P)H, FAD, heme, and a ligated redox-active substrate such as O(2). They function in the bacterial defense against nitrosative stress and are therefore considered as targets for new antibiotic drugs. Recently, azole derivatives were proven to be attractive nitric oxide dioxygenase inhibitors, and to explore their binding characteristics, we determined the X-ray structure of the flavoHb from Ralstonia eutropha in a complex with miconazole (FHP(M)), econazole (FHP(E)), and ketoconazole (FHP(K)). In agreement with UV-vis spectroscopic data, one azole compound binds inside the distal heme pocket and ligates to the heme iron by its imidazole substituent. The two additional substituents, mostly chlorinated phenyl groups, form a series of van der Waals contacts with the protein matrix. Both interactions explain their high affinity for flavoHbs, the binding constants being 2.6, 1.2, and 11.6 μM for miconazole, econazole, and ketoconazole, respectively. The FHP(M) and FHP(Lip) (flavoHbs originally loaded with a phospholipid) structures share an "open" state and the FHP(E) and FHP(K) structures a "closed" state. Although the azole compounds were able to push the lipid out of its binding site, a fatty acid fragment is still bound inside the heme pocket of FHP(E) and FHP(K) and dictates the state of the protein. The ligand-induced open-to-closed transition involves a reorientation of the NADH domain accompanied by conformational changes in the C-terminal arm, helix E, and the CE loop resulting in an encapsulation of the heme-binding pocket. Implications of the observed open-to-closed process on the catalytic cycle are discussed.  相似文献   

18.
Nitric oxide synthases (NOSs) are heme proteins that catalyze the formation of nitric oxide (NO) from L-arginine and oxygen in a sequential two-step process. Three structurally similar isoforms have been identified that deliver NO to different tissues for specific functions. An understanding of the interactions of ligands with the protein is essential to determine the mechanism of catalysis, the design of inhibitors and the differential auto-inhibitory regulation of the enzymatic activity of the isoforms due to the binding of NO to the heme. Ligand-protein interactions in the three isoforms revealed by resonance Raman scattering studies are reviewed in this article. The CO-related modes in the CO-bound ferrous enzyme are sensitive to the presence of substrate, either L-arginine or N-hydroxy-L-arginine, in the distal pocket, but insensitive to the presence of the tetrahydrobiopterin (H4B) cofactor. In contrast, when NO is coordinated to the ferric heme, the NO is sensitive to the substrate only when H4B is present. Furthermore, in the NO-bound ferric enzyme, the addition of H4B induces a large heme distortion that may modulate heme reduction and thereby regulate the NO auto-inhibitory process. In the metastable O2-bound enzyme, L-arginine binding causes the appearance of a shoulder on the O-O stretching mode, suggesting a specific interaction of the heme-bound dioxygen with the bound-substrate that may be crucial for the oxygenation reaction of the substrate during the catalytic turn-over. It is postulated that spectroscopic differences in the oxy-complex are a consequence of the degree of protonation of the proximal cysteine ligand on the heme. Resonance Raman studies of NOSs expand our understanding of the mechanistic features of this important family of enzymes.  相似文献   

19.
Milani M  Pesce A  Ouellet H  Guertin M  Bolognesi M 《IUBMB life》2003,55(10-11):623-627
Truncated hemoglobins (trHbs) build a separate subfamily within the hemoglobin superfamily; they are scarcely related by sequence similarity to (non-)vertebrate hemoglobins, displaying amino acid sequences in the 115-130 residue range. The trHb tertiary structure is based on a 2-on-2 alpha-helical sandwich, which hosts a unique hydrophobic cavity/tunnel system, traversing the protein matrix, from the molecular surface to the heme distal site. Such a protein matrix system may provide a path for diffusion of ligands to the heme. In Mycobacterium tuberculosis trHbN the heme-bound oxygen molecule is part of an extended hydrogen bond network including the heme distal residues TyrB10 and GlnE11. In vitro experiments have shown that M. tuberculosis trHbN supports efficiently nitric oxide dioxygenation, yielding nitrate. Such a reaction would provide a defense barrier against the nitrosative stress raised by host macrophages during lung infection. It is proposed that the whole protein architecture, the heme distal site hydrogen bonded network, and the unique protein matrix tunnel, are optimally designed to support the pseudo-catalytic role of trHbN in converting the reactive NO species into the harmless NO3-.  相似文献   

20.
Heme-Nitric oxide and/or OXygen binding (H-NOX) proteins are a family of diatomic gas binding hemoproteins that have attracted intense research interest. Here we employ X-ray absorption near-edge structure (XANES) spectroscopy to study the nitric oxide (NO) binding site of H-NOX. This is the first time this technique has been utilized to examine the NO/H-NOX signaling pathway. XANES spectra of wildtype and a point mutant (proline 115 to alanine, P115A) of the H-NOX domain from Thermoanaerobacter tengcongensis (Tt H-NOX) were obtained and analyzed for ferrous and ferric complexes of the protein. This work provides specific structural characterization of the solution state of several Tt H-NOX ferrous complexes (− unligated, − NO, and − CO) that were previously unavailable. Our iron K-edges indicate effective charge on the iron center in the various complexes and report on the electronic environment of heme iron. We analyzed the ligand field indicator ratio (LFIR), which is extracted from XANES spectra, for each complex, providing an understanding of ligand field strength, spin state of the central iron, movement of the iron atom upon ligation, and ligand binding properties. In particular, our LFIRs indicate that the heme iron is dramatically displaced towards the distal pocket during ligand binding. Based on these results, we propose that iron displacement towards the distal heme pocket is an essential step in signal initiation in H-NOX proteins. This provides a mechanistic link between ligand binding and the changes in heme and protein conformation that have been observed for H-NOX family members during signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号