首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Runx proteins are essential for a number of developmental processes and are aberrantly expressed in many human cancers. Runx factors bind DNA and co‐factors to activate or repress genes crucial for bone formation, hematopoiesis, and neuronal development. Co‐activator activator (CoAA) is a nuclear protein that regulates gene expression, RNA splicing and is overexpressed in many human tumors. In this study, we identified CoAA as a Runx2 binding protein. CoAA repressed Runx factor‐dependent activation of reporter genes in a histone deacetylase‐independent manner. CoAA also blocked Runx2‐mediated repression of the Axin2 promoter, a novel Runx target gene. The carboxy‐terminus of CoAA is essential for binding the Runt domains of Runx1 and Runx2. In electophoretic mobility shift assays, CoAA inhibited Runx2 interactions with DNA. These data indicate that CoAA is an inhibitor of Runx factors and can negate Runx factor regulation of gene expression. CoAA is expressed at high levels in human fetal osteoblasts and osteosarcoma cell lines. Suppression of CoAA expression by RNA interference reduced osteosarcoma cell viability in vitro, suggesting that it contributes to the proliferation and/or survival of osteoblast lineage cells. J. Cell. Biochem. 108: 378–387, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
11.
The SR proteins constitute a family of nuclear phosphoproteins which are required for constitutive splicing and also influence alternative splicing regulation. They have a modular structure consisting of one or two RNA recognition motifs (RRMs) and a C-terminal domain, rich in arginine and serine residues. The functional role of the different domains of SR proteins in constitutive splicing activity has been extensively studied in vitro; however, their contribution to alternative splicing specificity in vivo has not been clearly established. We sought to address how the modular domains of SR proteins contribute to alternative splicing specificity. The activity of a series of chimeric proteins consisting of domain swaps between different SR proteins showed that splice site selection is determined by the nature of the RRMs and that RRM2 of SF2/ASF has a dominant role and can confer specificity to a heterologous protein. In contrast, the identity of the RS domain is not important, as the RS domains are functionally interchangeable. The contribution of the RRMs to alternative splicing specificity in vivo suggests that sequence-specific RNA binding by SR proteins is required for this activity.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
The C-to-U editing of apolipoprotein-B (apo-B) mRNA is catalyzed by an enzyme complex that recognizes an 11-nt mooring sequence downstream of the editing site. A minimal holoenzyme that edits apo-B mRNA in vitro has been defined. This complex contains apobec-1, the catalytic subunit, and apobec-1 complementation factor (ACF), the RNA-binding subunit that binds to the mooring sequence. Here, we show that ACF binds with high affinity to single-stranded but not double-stranded apo-B mRNA. ACF contains three nonidentical RNA recognition motifs (RRM) and a unique C-terminal auxiliary domain. In many multi-RRM proteins, the RRMs mediate RNA binding and an auxiliary domain functions in protein-protein interactions. Here we show that ACF does not fit this simple model. Based on deletion mutagenesis, the RRMs in ACF are necessary but not sufficient for binding to apo-B mRNA. Amino acids in the pre-RRM region are required for complementing activity and RNA binding, but not for interaction with apobec-1. The C-terminal 196 amino acids are not absolutely essential for function. However, further deletion of an RG-rich region from the auxiliary domain abolished complementing activity, RNA binding, and apobec-1 interaction. The auxiliary domain alone did not bind apobec-1. Although all three RRMs are required for complementing activity and apobec-1 interaction, the individual motifs contribute differently to RNA binding. Point mutations in RRM1 or RRM2 decreased the Kd for apo-B mRNA by two orders of magnitude whereas mutations in RRM3 reduced binding affinity 13-fold. The pairwise expression of RRM1 with RRM2 or RRM3 resulted in moderate affinity binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号