首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In order to fully understand the orientation behaviour of migrating birds, it is important to understand when birds set their travel direction. Departure directions of migratory passerines leaving stopover sites are often assumed to reflect the birds'' intended travel directions, but this assumption has not been critically tested. We used data from an automated radiotelemetry system and a tracking radar at Falsterbo peninsula, Sweden, to compare the initial orientation of departing songbirds (recorded by radiotelemetry) with the orientation of songbird migrants in climbing and level flight (recorded by radar). We found that the track directions of birds at high altitudes and in level flight were more concentrated than the directions of departing birds and birds in climbing flight, which indicates that the birds adjust their travelling direction once aloft. This was further supported by a wide scatter of vanishing bearings in a subsample of radio-tracked birds that later passed an offshore radio receiver station 50 km southeast of Falsterbo. Track directions seemed to be more affected by winds in climbing compared with level flights, which may be explained by birds not starting to partially compensate for wind drift until they have reached cruising altitudes.  相似文献   

2.
Nocturnal passerine migrants could substantially reduce the amount of energy spent per distance covered if they fly with tailwind assistance and thus achieve ground speeds that exceed their airspeeds (the birds’ speed in relation to the surrounding air). We analysed tracking radar data from two study sites in southern and northern Scandinavia and show that nocturnally migrating passerines, during both spring and autumn migration, regularly travelled without tailwind assistance. Average ground and airspeeds of the birds were strikingly similar for all seasonal and site‐specific samples, demonstrating that winds had little overall influence on the birds’ resulting travel speeds. Distributions of wind effects, measured as (1) the difference between ground and airspeed and (2) the tail/headwind component along the birds’ direction of travel, showed peaks close to a zero wind effect, indicating that the migratory flights often occurred irrespective of wind direction. An assessment of prevailing wind speeds at the birds’ mean altitude indicated a preference for lower wind speeds, with flights often taking place in moderate winds of 3–10 m/s. The limited frequency of wind‐assisted flights among the nocturnal passerine migrants studied is surprising and in clear contrast to the strong selectivity of tailwinds exhibited by some other bird groups. Relatively high costs of waiting for favourable winds, rather low probabilities of occurrence of tailwind conditions and a need to use a large proportion of nights for flying are probably among the factors that explain the lack of a distinct preference for wind‐assisted flights among nocturnal passerine migrants.  相似文献   

3.
Some of the factors that could influence changes in phenology of the song thrush (Turdus philomelos) during spring migration have been analyzed in relation to the timing of their return to the south-east Baltic region over the last 40 years. These include wind direction and velocity, temperature and precipitation in the wintering areas and along the migratory route. In March, a significant correlation was found between the timing of passage in the Baltic region and both the air temperatures in wintering area and winds over the migratory route. In April, when mass migration of thrushes occurs, the timing of passage was correlated with temperature, winds and, partly, precipitation over the route of migration. In this month, the frequency of tailwinds increased significantly along the route of migration from south-west France to the Baltic region over the last 40 years. The tailwind frequency was correlated with the beginning, middle and end of spring passage, accounting for 51% of the variance of median dates of the passage. The higher ambient temperatures over the migratory route explain nearly 20% of the variance in the timing of passage. Our results suggest that the advance in the timing of spring migration is primarily due to (1) the increased frequency of tailwinds favorable for migratory flights over the migratory route, and (2) the earlier emergence of the conditions enhancing migration due to higher spring temperatures in the winter quarters and on the migratory route.  相似文献   

4.
Whether migrating birds compensate for wind drift or not is a fundamental question in bird migration research. The procedures to demonstrate and quantitatively estimate wind drift or compensation are fraught with difficulties and pitfalls. In this paper, we evaluate four methods that have been used in several studies over the past decades. We evaluate the methods by analysing a model migratory movement with a realistic scatter in flight directions, for the ideal cases of full drift and complete compensation. Results obtained with the different methods are then compared with the "true behaviour" of the model movement, illustrating that spurious patterns of drift and compensation arise in some cases. We also illustrate and evaluate the different methods of estimating drift for a real case, based on tracking radar measurements of bird migration in relation to winds. Calculating the linear regression of mean geographic track (resulting flight direction) and heading directions (directions of the birds' body axis) of a migratory movement under different wind conditions in relation to the angle alpha (the angle between mean track and heading) always provides robust and reliable results. Comparing mean flight directions between occasions with winds from the left and right of the mean flight direction of the whole migratory movement also always provides expected and correct measures of drift. In contrast, regressions of individual flight directions in relation to alpha (the angle between track and heading for the specific individuals or flocks) are liable to produce biased and spurious results, overestimating compensation/overcompensation if following winds dominate in the analysis and overestimating drift/overdrift if opposed winds are dominating. Comparing mean directions for cases with winds from the left and right in relation to individual flight directions also gives biased and spurious results unless there is full variation in wind directions or an equal distribution of crosswinds from left and right. The results of the methodological evaluation and the analysis of the real case indicate that some earlier analyses of wind drift may have to be re-evaluated.  相似文献   

5.
Vast numbers of insects and passerines achieve long-distance migrations between summer and winter locations by undertaking high-altitude nocturnal flights. Insects such as noctuid moths fly relatively slowly in relation to the surrounding air, with airspeeds approximately one-third of that of passerines. Thus, it has been widely assumed that windborne insect migrants will have comparatively little control over their migration speed and direction compared with migrant birds. We used radar to carry out the first comparative analyses of the flight behaviour and migratory strategies of insects and birds under nearly equivalent natural conditions. Contrary to expectations, noctuid moths attained almost identical ground speeds and travel directions compared with passerines, despite their very different flight powers and sensory capacities. Moths achieved fast travel speeds in seasonally appropriate migration directions by exploiting favourably directed winds and selecting flight altitudes that coincided with the fastest air streams. By contrast, passerines were less selective of wind conditions, relying on self-powered flight in their seasonally preferred direction, often with little or no tailwind assistance. Our results demonstrate that noctuid moths and passerines show contrasting risk-prone and risk-averse migratory strategies in relation to wind. Comparative studies of the flight behaviours of distantly related taxa are critically important for understanding the evolution of animal migration strategies.  相似文献   

6.
SPRING MIGRATION OVER PUERTO RICO AND THE WESTERN ATLANTIC, A RADAR STUDY   总被引:1,自引:0,他引:1  
W. John  Richardson 《Ibis》1974,116(2):172-193
Migration over Puerto Rico was recorded by time-lapse filming of the display of a long-range surveillance radar on 40 days and 37 nights in the period 2 March-29 May 1971. Moderate density movements occurred every night; low density movements occurred on most days. Many birds, primarily passerines, took off from Puerto Rico each evening at 20–45 minutes after sunset.
Almost all birds flew to the west, NW or north. Birds were seen approaching from the direction of the Windward Islands and Venezuela, over Puerto Rico, and departing towards the Bahamas and eastern coast of the U.S. Uni- and multivariate analyses showed that the number of birds departing W-N each evening was positively correlated with following winds.
There is less night-to-night variation in the amount of migration at Puerto Rico than in eastern North America. However, this is apparently the result of less variable weather in the tropics, not the result of any lesser degree of meteorological selectivity by the migrants.
The tracks of the birds were correlated with wind direction. Birds moved WNW-NW with NE side winds but NW-NNW with SE following winds. The tracks were rarely exactly downwind. The variance amongst the directions of individual birds at any given time was usually small and not correlated with cloud cover or magnetic disturbances. The estimated headings of the birds varied from day to day in a pattern suggesting adjustment of headings to compensate at least partially for lateral wind drift.
In autumn many birds approach Puerto Rico from the north or even east of north; in spring few birds moved in the opposite directions. This difference in routes takes advantage of prevailing wind patterns.  相似文献   

7.
The flight performance of birds is strongly affected by the dynamic state of the atmosphere at the birds' locations. Studies of flight and its impact on the movement ecology of birds must consider the wind to help us understand aerodynamics and bird flight strategies. Here, we introduce a systematic approach to evaluate wind speed and direction from the high‐frequency GPS recordings from bird‐borne tags during thermalling flight. Our method assumes that a fixed horizontal mean wind speed during a short (18 seconds, 19 GPS fixes) flight segment with a constant turn angle along a closed loop, characteristic of thermalling flight, will generate a fixed drift for each consequent location. We use a maximum‐likelihood approach to estimate that drift and to determine the wind and airspeeds at the birds' flight locations. We also provide error estimates for these GPS‐derived wind speed estimates. We validate our approach by comparing its wind estimates with the mid‐resolution weather reanalysis data from ECMWF, and by examining independent wind estimates from pairs of birds in a large dataset of GPS‐tagged migrating storks that were flying in close proximity. Our approach provides accurate and unbiased observations of wind speed and additional detailed information on vertical winds and uplift structure. These precise measurements are otherwise rare and hard to obtain and will broaden our understanding of atmospheric conditions, flight aerodynamics, and bird flight strategies. With an increasing number of GPS‐tracked animals, we may soon be able to use birds to inform us about the atmosphere they are flying through and thus improve future ecological and environmental studies.  相似文献   

8.
Tracking radar and visual observation techniques were used to observe the orientation of free-flying passerine nocturnal migrants in situations in which potentially usable directional cues were absent or gave conflicting information. When migrants had seen the sun near the time of sunset and/or the stars, they oriented in appropriate migratory directions even when winds were opposed. Under solid overcast skies that prevented a view of both sun and stars, the birds headed downwind in opposing winds and thus moved in seasonally inappropriate directions. The data point to the primacy of visual cues over wind direction, with either sun or stars being sufficient to allow the birds to determine the appropriate migration direction.  相似文献   

9.
Nocturnal autumn bird migration at Falsterbo, South Sweden   总被引:3,自引:0,他引:3  
We investigated the patterns of nocturnal bird migration in autumn 1998 at a coastal site on the Falsterbo peninsula in south-western Sweden, by means of a passive infrared device. In total 17 411 flight paths, including track direction and altitude, of migrating birds were recorded for 68 nights from August to October. Mean migratory traffic rate per night varied between 6 and 6618 birds km−1 h−1, with an average of 1319 birds km−1 h−1. Migration at Falsterbo showed a similar seasonal pattern to that reported for central Europe, with pronounced peaks of migration and intermittent periods with relatively low migratory intensities. Weather factors explained two thirds of the variance in the intensity of bird migration. During nights with intense migration, associated with weak winds, the mean track direction was close to that in central western Europe (225°). Birds usually maintained a constant heading independent of wind directions and, in consequence, were drifted by the wind. The mean orientation clearly differed from that of the nearest coastline, suggesting that the birds did not use the topography below to compensate for wind drift.  相似文献   

10.
In this paper we describe fall nocturnal migration at three localities in eastern New York, one adjacent to the Hudson River, the other two 30 km to the west in a topographically more uniform area. Migrants at both study areas moved southwest in winds not out of the west and were, therefore, seemingly unaffected by the river. In west winds, however, birds away from the river moved south-southeast whereas those in the vicinity of the river flew a track west of south paralleling the river. In addition, a relative increase in the number of migrants along the river compared to away was observed in west winds as birds presumably became concentrated near the river. We conclude that on most autumn nights migrants passing through this area have a preferred track direction toward the southwest and in strong winds from the west and northwest they are drifted. Upon reaching the vicinity of the Hudson River, some birds alter their headings yielding a track direction that closely parallels the river resulting in at least a partial compensation for wind drift. No alternative hypothesis is consistent with all the data.  相似文献   

11.
A surveillance radar in southwest Iceland was recorded by time-lapse filming in order to monitor the migration pattern of birds departing from or passing Iceland on their way to high-arctic breeding grounds in late May and early June 1988–1990. An overwhelming majority of the radar echoes from migrating bird flocks departed from Iceland but a few seemed to pass over from further south. Timing of movements and supplementary field observations indicated that mainly four species were involved, i.e. Knot Calidris canutus , Turnstone Arenaria interpres. Sanderling C. alba and Brent Goose Branta bernicla. Departures in late May from stopover sites in Iceland took place mainly in the afternoons, peaking between 1700 and 1900h in all 3 years. The departure intensity was lowest between 0100 and 1300h. Flight paths were generally straight, and the average track direction was towards the northwest (315°), suggesting that the majority of birds were heading for a transglacial migration across the Greenland icecap on their way to breeding grounds in northwest Greenland and northern Canada. Track directions varied with wind, although to a rather small degree, indicating partial drift or pseudodrift. More echoes were registered in easterly winds (tailwinds) and fewer in northerly winds than expected from random. Airspeeds were significantly slower than groundspeeds (average 17.0 and 18.7 m/s, respectively), showing that the birds more often than not benefited from tail wind assistance.  相似文献   

12.
On their migratory journeys, terrestrial birds can come across large inhospitable areas with limited opportunities to rest and refuel. Flight over these areas poses a risk especially when wind conditions en route are adverse, in which case inhospitable areas can act as an ecological barrier for terrestrial migrants. Thus, within the east-Atlantic flyway, the North Sea can function as an ecological barrier. The main aim of this study was to shed light on seasonal patterns of bird migration in the southern North Sea and determine whether departure decisions on nights of intense migration were related to increased wind assistance. We measured migration characteristics with a radar that was located 18 km off the NW Dutch coast and used simulation models to infer potential departure locations of birds on nights with intense nocturnal bird migration. We calculated headings, track directions, airspeeds, groundspeeds on weak and intense migration nights in both seasons and compared speeds between seasons. Moreover, we tested if departure decisions on intense migration nights were associated with supportive winds. Our results reveal that on the intense migration nights in spring, the mean heading was towards E, and birds departed predominantly from the UK. On intense migration nights in autumn, the majority of birds departed from Denmark, Germany and north of the Netherlands with the mean heading towards SW. Prevailing winds from WSW at departure were supportive of a direct crossing of the North Sea in spring. However, in autumn winds were generally not supportive, which is why many birds exploited positive wind assistance which occurred on intense migration nights. This implies that the seasonal wind regimes over the North Sea alter its migratory dynamics which is reflected in headings, timing and intensity of migration.  相似文献   

13.
This study tested the potential influence of meteorological parameters (temperature, humidity, wind direction, thermal convection) on different migration characteristics (namely flight speed, altitude and direction and daily distance) in 16 black storks (Ciconia nigra). The birds were tracked by satellite during their entire autumnal and spring migration, from 1998 to 2006. Our data reveal that during their 27-day-long migration between Europe and Africa (mean distance of 4100 km), the periods of maximum flight activity corresponded to periods of maximum thermal energy, underlining the importance of atmospheric thermal convection in the migratory flight of the black stork. In some cases, tailwind was recorded at the same altitude and position as the birds, and was associated with a significant rise in flight speed, but wind often produced a side azimuth along the birds'' migratory route. Whatever the season, the distance travelled daily was on average shorter in Europe than in Africa, with values of 200 and 270 km d−1, respectively. The fastest instantaneous flight speeds of up to 112 km h−1 were also observed above Africa. This observation confirms the hypothesis of thermal-dependant flight behaviour, and also reveals differences in flight costs between Europe and Africa. Furthermore, differences in food availability, a crucial factor for black storks during their flight between Europe and Africa, may also contribute to the above-mentioned shift in daily flight speeds.  相似文献   

14.
Flight dynamics theories are influenced by two major topics: how birds adapt their flight to cope with heterogeneous habitats, and whether birds plan to use the wind field or simply experience it. The aim of this study was to understand the flight dynamics of free-flying Cory’s shearwaters in relation to the wind characteristics on the coastal upwelling region of continental Portugal. We deployed recently miniaturised devices—global positioning system loggers to collect precise and detailed information on birds’ positions and motions. Prevalent winds were blowing from the north-east and adults used those winds by adjusting their flight directions mainly towards north-west and south-west, flying with cross and tail winds, respectively, and avoiding head winds. This is confirmation that Cory’s shearwaters use a shear soaring flying strategy while exploiting the environment for food: adults foraged mainly with cross winds and their ground speed was not constant during all foraging trips as it changed dynamically as a result of the ocean surface shear winds. During travelling phases, ground speed was strongly influenced by the position of the bird with regard to the wind direction, as ground speed increased significantly with increasing tail wind component (TWC) values. Adults appear to choose foraging directions to exploit ambient wind, in order to improve shear soaring efficiency (cross winding) and exploit diurnal changes in tail wind strength to maximise commuting efficiency. We report, for the first time, precise ground speed values (GPS-derived data) and computed actual flight speed values (using TWC analysis) for Cory’s shearwater.  相似文献   

15.
《Animal behaviour》1988,36(3):865-876
The orientation of robins captured during autumn and spring migration at two different sites, Falsterbo and Ottenby, in southern Sweden was investigated by cage experiments during the twilight period after sunset. The robins were tested under clear skies with skylight from sunset visible, and under simulated total overcast. The robins from the two sites differed in orientation, especially during autumn migration. While robins from Ottenby generally oriented in their expected migratory direction, the birds from Falsterbo under clear skies oriented towards the sunset direction with a narrow scatter in individual mean headings. Under simulated total overcast the robins from Falsterbo perferred northerly directions in autumn. Short-distance recoveries, one or only a few days after ringing, show that robins in autumn regularly fly 20–80 km from Falsterbo on northerly courses, indicating that they have temporarily reoriented from their normal migratory direction when confronted with the Baltic Sea. In contrast, most robins arrive at Ottenby by extensive flights across the Baltic Sea, and rapidly continue their sea crossing in the normal migratory directions. Mean fat deposits in autumn robins were significantly larger at Ottenby than at Falsterbo. These results indicate that migrating birds may show markedly different orientational dispositions depending on body condition and on their situation with respect to preceding and impending migration over land and sea, respectively.  相似文献   

16.
The behaviour of sharp-shinned hawks (Accipiter striatus) confronted by water barriers was examined during fall migration at Cape May Point, new Jersey (Delaware Bay) and during spring migration at Whitefish Point, Michigan (Lake Suerior). Both study sites were at the end of long peninsulas where hawks must either cross approximately 18–24 km of water or fly hundreds of kilometres around the water barriers. Sharp-shinned hawks readily crossed at both sites when winds lateral (perpendicular) to crossing directions were light, but rarely when winds were strong, suggesting that the preferred to cross when the potential for being blown off course was minimal. A greater proportion of hawks also crossed when flight at the shoreline was at high as opposed to low altitudes, and when land on the opposite side of the water barrier was visible. At Cape May, hawks compensated for lateral winds of up to 6 m/s during flights over water, although very few birds attempted to cross when lateral winds exceeded 5 m/s. At Whitefish, hawks compensated only partially for lateral winds. The difference in realized flight direction between sites was attributable to differing topographies, not to a difference in the hawks' ability to compensate for lateral wind. It was hypothesized that there is a threshold for drift at lateral winds between 5 and 8 m/s for sharp-shinned hawks using powered flight over water.  相似文献   

17.
This paper examines the influence of atmospheric structure andmotion (principally winds aloft) on the flight behavior andaltitudinal distribution of migrating songbirds. Bird migrationdata that I gathered using surveillance radars operated by theUnited States National Weather Service and the Federal AviationAdministration and a vertically directed fixed-beam marine radarmounted on a mobile laboratory are analyzed in relation to windsaloft. Migrating birds appear to fly at altitudes where windswill minimize the cost of transport and assist movements inseasonally appropriate directions. When migratory flights occurat altitudes that are higher than usual, a significant correlationexists between the altitude of densest migration and the altitudeof most favorable wind. Lower altitudes may be favored overslightly more favorable winds at much higher altitudes. Radardata on the flight behavior of migrating birds in the vicinityof frontal systems is also examined. The flight strategies ofmigrants (fly over the front, change the direction of flight,or land and terminate the flight) differ depending on seasonand the "thickness" of the front. Recent migration studies thatare related to atmospheric structure and motion are summarizedand related to atmospheric processes operating simultaneouslyat vastly different spatial and temporal scales.  相似文献   

18.
The height distribution of nocturnal migrants in southern Israel was determined by con-ically scanning the sky with the pencil-beam of an X-band radar at different elevation angles. Altitudinal profiles of meteorological parameters were derived from radio sondes launched at midnight and from pilot balloons launched every 4 h. A model to predict the height distribution of birds by means of meteorological variables was developed by assuming that the observed proportions of birds within a height zone, compared with the neighbouring height zones, reflect the degree of the birds' preference for that height zone. Only one among the variables included in the multiple regression analysis proved to have a significant influence on the height distribution of migrants: the difference of tailwind speed between height zones. Simulations with 1000 birds choosing altitudes by means of the night's altitudinal profile of tailwind speed closely traced the observed distributions. The fact that all the other meteorological factors which were previously suggested to have an influence on the flight range in trans-desert migration were not selected as relevant factors is discussed. The following basic information on nocturnal bird migration in the Negev is provided as a background for the statistical analysis: Directions of migration are within very narrow limits. During the first hour after take-off, 60% of autumn migrants and 75% of spring migrants are climbing, with vertical speeds of 0.1–2 m per s and 0.1–4 m per s, respectively. During the rest of the night, climbing and descending birds are in nearly equal proportions. Thus, there is a high potential of sampling atmospheric conditions at different altitudes. Height distributions in spring and autumn show the influence of the trade wind situation, autumn migrants making use of the northerly winds at low levels in spite of high temperatures, while spring migrants tend to reach the southwesterly winds at higher levels.  相似文献   

19.
Fast and fuel efficient? Optimal use of wind by flying albatrosses   总被引:9,自引:0,他引:9  
The influence of wind patterns on behaviour and effort of free-ranging male wandering albatrosses (Diomedea exulans) was studied with miniaturized external heart-rate recorders in conjunction with satellite transmitters and activity recorders. Heart rate was used as an instantaneous index of energy expenditure. When cruising with favourable tail or side winds, wandering albatrosses can achieve high flight speeds while expending little more energy than birds resting on land. In contrast, heart rate increases concomitantly with increasing head winds, and flight speeds decrease. Our results show that effort is greatest when albatrosses take off from or land on the water. On a larger scale, we show that in order for birds to have the highest probability of experiencing favourable winds, wandering albatrosses use predictable weather systems to engage in a stereotypical flight pattern of large looping tracks. When heading north, albatrosses fly in anticlockwise loops, and to the south, movements are in a clockwise direction. Thus, the capacity to integrate instantaneous eco-physiological measures with records of large-scale flight and wind patterns allows us to understand better the complex interplay between the evolution of morphological, physiological and behavioural adaptations of albatrosses in the windiest place on earth.  相似文献   

20.
We studied the prevalence and potential subclinical effects of infestation by Trichomonas gallinae in 91 hunter-harvested Common Wood Pigeons Columba palumbus from northern ( n  = 30) and southern ( n  = 61) Spain during the winter period. All animals were measured, sexed, aged, necropsied and their organs were weighed. Infestation with T. gallinae was diagnosed using three different methods: direct inspection for the presence of lesions, direct microscopic observation and culture. Of the sampled birds, 34.2% were positive for the presence of T. gallinae . Prevalence was significantly higher in adult Wood Pigeons than in the juvenile group, and prevalence was significantly lower in birds sampled from the north. No significant differences in prevalence were found between males and females. Culture was significantly more sensitive than the other methods of diagnosis. Parasitized birds were in poorer body condition, as revealed by their lower body mass and fat reserves. No significant variation could be detected in heart or spleen weight between parasitized and healthy birds. However, juvenile Wood Pigeons in which T. gallinae was detected had a significantly larger bursa of Fabricius. Variations in the prevalence of T. gallinae in Wood Pigeons could be related to migration as well as increased exposure through shared feed and water where these are artificially provided. We also discuss the potential effect of T. gallinae on body condition and the eventual risk for endangered predators through increased exposure to infected prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号