首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xenopus and Cynops oocytes were injected with exogenous mRNA prepared from rat small intestine and kidney and their electrical responses to amino acids were measured by both the current clamped and the voltage clamped methods. Oocytes injected with mRNA of rat small intestine showed a depolarization response to several neutral and basic amino acids, and almost no response to acidic amino acids. The responses to amino acids increased with incubation time after injection of mRNA, and followed Michaelis-Menten type kinetics. The responses were dependent on both Na+ concentration and membrane potential, and were inactivated by a sulfhydryl reagent, 5,5-dithiobis(2-nitrobenzoate). These results are interpreted as due to the expression of Na+/amino acid cotransporter(s) in oocytes injected with rat small intestine mRNA. On the other hand, the oocyte injected with rat kidney mRNA showed a hyperpolarization response to neutral amino acids, a depolarization response to basic ones, and almost no response to acidic ones in frog Ringer solution. These responses were independent of Na+ concentration and followed Michaelis-Menten type kinetics. These amino acid response characteristics in oocytes injected with rat kidney mRNA are interpreted as due to the expression of facilitated diffusion carrier protein(s) (uniporter) of amino acids in the oocyte.  相似文献   

2.
We investigated the hypothesis that extracellular Na+ is required for the rapid mobilization of Ca2+ by rat parotid cells after adrenergic stimulation. When Na+ salts in the media were osmotically replaced with either choline chloride (+atropine) or sucrose, efflux of 45Ca2+ from preloaded cells, caused by 10 microM-(-)-adrenaline, was unchanged. Similarly adrenaline stimulated 45Ca2+ uptake into cells under nonsteady-state conditions in the presence or absence of Na+. Monensin, a Na+ ionophore, was able to elicit a modest increase in 45Ca2+ efflux, compared with controls. Studies of net 45Ca2+ flux, performed under near-steady-state conditions, showed that adrenaline caused net 45Ca2+ accumulation, whereas monensin caused net 45Ca2+ release. The effect of monensin required the presence of Na+ in the incubation medium. Both 1 mM-LaCl3 and 0.1 mM-D-600 prevented adrenaline-stimulated 45Ca2+ uptake into cells, but had no effect on monensin-induced changes. We conclude that (1) the rapid mobilization of Ca2+ by adrenergic agonists seen in rat parotid cells does not require a Na+out greater than Na+in gradient and (2) the nature of the monensin effect is quite different from the adrenergic-agonist-induced response.  相似文献   

3.
The binding of 45Ca2+ to membrane material isolated from lobster walking leg nerves was studied using a rapid filtration technique. In solutions of high ionic strength (450 mM), the amount of 45Ca2+ bound to this membrane material was found to be highly dependent on the monovalent cation used in the incubating solution. The amount of 45Ca2+ bound was larger when the membranes were incubated in a KCl solution compared to when they were incubated in a NaCl solution. This difference was attributed to the ability of these closed membrane vesicles to accumulate Ca2+ into the vesicle when incubating in a KCl solution but not in a NaCl solution. This accumulation of Ca2+ was found to be independent of metabolic energy and depended primarily on the absence of Na+ from the incubation medium. At low ionic strength, the membranes formed open fragments and the amount of Ca2+ bound was no longer sensitive to the monovalent cation species in the incubation solution. The 45Ca2+ bound under these low ionic strength conditions was considered to be bound to anionic sites on the membranes.  相似文献   

4.
Xenopus oocytes were injected with size-fractionated mRNA isolated from the renal cortex of rabbit kidney and after 4 days incubation, PAH uptake in oocytes injected with mRNA (0.7-1.3 kb) was 8 to 45 fold that of the water injected controls. The oocyte to medium ratio of accumulated PAH was 1.95. The Km and Vmax for transport were 333 microM and 66.6 nmoles.oocyte-1.min-1, respectively. This Km is similar to that reported for PAH transport in intact kidneys and slices. The uptake of PAH was unaffected by the absence of Na+ or the presence of probenecid. Expression of the transport represents the first step in an effort to clone and identify the gene for PAH transport.  相似文献   

5.
The effect of K+ and Na+ on the Ca2+ binding site in the dense core of monoaminergic vesicles of pineal nerves was investigated in the rat. Rat pineal glands, bisected immediately after decapitation, were incubated at room temperature in solutions containing high K+ or high Na+ in the presence or absence of Ca2+. Fixation was performed in glutaraldehyde-osmium tetroxide in collidine buffer, with and without CaCl2. It was confirmed that, after fixation in Ca2+-containing solutions, an electron-dense particle, located in the vesicle core, which can be considered a calcium deposit, appears within the synaptic vesicles. It was observed that this Ca2+ deposit may be modified by incubation in a high K+ or high Na+ milieu before fixation in Ca2+ containing solutions. When the incubation was carried out with high K+ and high Ca2+ simultaneously, Ca2+ deposits were considerably increased. With K+ alone, no Ca2+ deposits were apparent, as when electrical stimulation is applied before fixation. This effect was not observed when the incubation was done in high Na+. Consecutive incubations in high K+ and high Na+, respectively, restored the capability of the vesicle cores to bind Ca2+. Prolonged incubation in high Na+ before fixation increased Ca2+ deposits within the vesicles. These findings are in line with data on the effect of these ions upon the storage and release of biogenic amines and suggest that these ions modify the capability of synaptic vesicles to bind Ca2+.  相似文献   

6.
Removing extracellular Na+ (Na+o) evoked a large increase in cytosolic free Ca2+ concentration ([Ca2+]i in human skin fibroblasts. Decreasing [Na+]o from 120 to 14 mM caused the half-maximal peak increase in [Ca2+]i. Removing Na+o strongly stimulated 45Ca2+ efflux and decreased total cell Ca2+ by about 40%. Bradykinin caused changes in [Ca2+]i, total Ca2+, and 45Ca2+ fluxes similar to those evoked by removing Na+o. Prior stimulation of the cells with bradykinin prevented Na+o removal from increasing [Ca2+]i and vice versa. Na+o removal rapidly increased [3H]inositol polyphosphate production. Loading the cells with Na+ had no effect on the increase in 45Ca2+ efflux produced by Na+o removal. Therefore, decreasing [Na+]o probably stimulates a "receptor(s)" which is sensitive to extracellular, not intracellular, Na+. Removing Na+o also mobilized intracellular Ca2+ in smooth muscle and endothelial cells cultured from human umbilical and dog coronary arteries, respectively.  相似文献   

7.
K+-stimulated 45Ca2+ influx was measured in rat brain presynaptic nerve terminals that were predepolarized in a K+-rich solution for 15 s prior to addition of 45Ca2+. This 'slow' Ca2+ influx was compared to influx stimulated by Na+ removal, presumably mediated by Na+-Ca2+ exchange. The K+-stimulated Ca2+ influx in predepolarized synaptosomes, and the Na+-removal-dependent Ca2+ influx were both saturating functions of the external Ca2+ concentration; and both were half-saturated at 0.3 mM Ca2+. Both were reduced about 50% by 20 microM Hg2+, 20 microM Cu2+ or 0.45 mM Mn2+. Neither the K+-stimulated nor the Na+-removal-dependent Ca2+ influx was inhibited by 1 microM Cd2+, La3+ or Pb2+, treatments that almost completely inhibited K+-stimulated Ca2+ influx in synaptosomes that were not predepolarized. The relative permeabilities of K+-stimulated Ca2+, Sr2+ or Ba2+ influx in predepolarized synaptosomes (10:3:1) and the corresponding selectivity ratio for Na+-removal-dependent divalent cation uptake (10:2:1) were similar. These results strongly suggest that the K+-stimulated 'slow' Ca2+ influx in predepolarized synaptosomes and the Na+-removal-dependent Ca2+ influx are mediated by a common mechanism, the Na+-Ca2+ exchanger.  相似文献   

8.
The effect of 13-L-hydroperoxylinoleic acid (LOOH) on both Xenopus oocytes and neurotransmitter receptors synthesized in the oocytes was studied by electrophysiological and ion flux measurement. Addition of LOOH to the incubation mixture of the oocytes raised the membrane potential and decreased the membrane resistance of the oocytes. These effects of LOOH on the oocytes were reversed within a few hours by incubation with frog Ringer solution. Addition of LOOH also caused an increase of Li+ and 45Ca2+ uptake into the oocytes. However, production of alkoxy radicals by the addition of FeCl2 to the incubation mixture containing LOOH did not accelerate the damage to the oocytes by LOOH. So essential toxicity is caused possibly by an increase in the membrane permeability resulting from disturbance of the lipid bilayer arrangement, not from production of active alkoxy radicals during decomposition of LOOH. Nicotinic acetylcholine and gamma-aminobutyric acid receptors were synthesized in Xenopus oocytes by injecting mRNA prepared from Electrophorus electricus electroplax and rat brain. LOOH noncompetitively inhibited the function of these receptors and also increased the rate of desensitization of the receptors.  相似文献   

9.
10.
Vanadate in the range 0-5 mM has positive inotropic effects on myocardial strips of frog and to a lesser extent on those of rat. Inhibiting the sarcolemmal Na+, Ca2+ exchange by a solution free of Ca2+ and Na+ caused a drop in 45Ca efflux and a transient increase in resting tension. These effects were more expressed for the frog than for the rat myocardium, which suggests that the Na+ for Ca2+ exchange across the cell membrane is more important in the frog than in the rat myocardium. A subsequent addition of vanadate at 2 or 5 mM had no effect on 45Ca efflux, while it increased the resting tension. This increase was higher for the frog than for the rat myocardium. These results suggest that the inotropic effects of vanadate may be due to an effect on membrane-bound Ca2+-ATPase.  相似文献   

11.
Apical membranes of ileal enterocytes contain the major Na+/bile acid cotransporter activity in mammals. Microinjection of guinea pig ileal mucosal Poly A+ mRNA (25 ng) into Xenopus oocytes resulted in 22,23-3H-cholyltaurine uptake at day 3 after injection (453 fmol/oocyte-hr), while control viral mRNA (25 ng) gave an uptake rate of 133 fmol/oocyte-hr. The transport rate increased in direct relationship to the concentration of injected mRNA, cholyltaurine, or Na+ in the incubation media. Uptake of cholyltaurine using rabbit ileal mucosal Poly A+ mRNA was 3891 fmole/oocyte-hr compared to rabbit jejunal-mucosa Poly A+ mRNA (control) injections inducing 728 fmol/oocyte-hr. Such expression of the ileal Na+/bile acid cotransporter may facilitate cloning of this key mammalian gene.  相似文献   

12.
Na+ fluxes were measured in toad bladder microsomes. Under favorable conditions, 60-90% of the tracer uptake was blocked by amiloride (Ki = 2.3 X 10(-8) M), i.e. mediated by the apical Na+-specific channels. Vesicles derived from cells maintained at 0 degrees C exhibited relatively small amiloride-sensitive fluxes. However, incubating the scraped cells at 25 degrees C prior to homogenization induced a nearly 5-fold increase of the amiloride-blockable flux in vesicles. This activation was fairly slow (t 1/2 = 5-10 min), irreversible, and strongly dependent on the incubation temperature. On the other hand, the Na+-specific apical conductance measured in mounted bladders was only slightly affected by the incubation temperature. The above activation process could be observed only in Ca2+-free EGTA-containing solutions. Adding Ca2+ (1 mM) to the cell suspension and subsequently removing it before homogenization blocked almost completely the amiloride-sensitive tracer uptake in the vesicles. The data are compatible with the model that the epithelial Na+ channels are down-regulated by a Ca2+-dependent reaction. The incubation of scraped, somewhat permeabilized cells in a Ca2+-free solution releases channels from this down-regulation and increases the Na+ conductance in a temperature-dependent process. The regulation of channels appears to involve a cytoplasmic factor which induces a stable modification of the apical membrane, preserved by the isolated vesicle.  相似文献   

13.
During perifusion with medium deprived of Ca2+, addition of glucose or omission of Na+ resulted in prompt and quantitatively similar inhibitions of 45Ca efflux from beta-cell rich pancreatic islets microdissected from ob/ob mice. Glucose had no additional inhibitory effect when Na+ was isoosmotically replaced by sucrose or choline+. When K+ was used as a substitute for Na+, the inhibitory effect of Na+ removal on 45Ca efflux became additive to that of glucose. The observation that glucose can be equally effective in inhibiting 45Ca efflux in the presence or absence of Na+ is difficult to reconcile with the postulate that the Na+-Ca2+ countertransport mechanism is a primary site of action for glucose.  相似文献   

14.
Using the whole-cell voltage clamp technique, the electrical changes in oocyte and embryo plasma membrane were followed during different meiotic and developmental stages in Ciona intestinalis. We show, for the first time, an electrophysiological characterization of the plasma membrane in oocytes at the germinal vesicle (GV) stage with high L-type calcium (Ca2+) current activity that decreased through meiosis. Moreover, the absence of Ca2+ reduced germinal vesicle breakdown (GVBD), which is consistent with a role of Ca2+ currents in the prophase/metaphase transition. In mature oocytes at the metaphase I (MI) stage, Ca2+ currents decreased and then disappeared and sodium (Na+) currents first appeared remaining high up to the zygote stage. Intracellular Ca2+ release was higher in MI than in GV, indicating that Ca2+ currents in GV may contribute to fill the stores which are essential for oocyte contraction at fertilization. The fertilization current generated in Na+ free sea water was significantly lower than the control; furthermore, oocytes fertilized in the absence of Na+ showed high development of anomalous "rosette" embryos. Current amplitudes became negligible in embryos at the 2- and 4-cell stage, suggesting that signaling pathways that mediate first cleavage do not rely on ion current activities. At the 8-cell stage embryo, a resumption of Na+ current activity and conductance occurred, without a correlation with specific blastomeres. Taken together, these results imply: (i) an involvement of L-type Ca2+ currents in meiotic progression from the GV to MI stage; (ii) a role of Na+ currents during electrical events at fertilization and subsequent development; (iii) a major role of plasma membrane permeability and a minor function of specific currents during initial cell line segregation events.  相似文献   

15.
N Dascal  R Boton 《FEBS letters》1990,267(1):22-24
Upon two repetitive deep injections of Ca2+ into Xenopus oocyte (200-300 microns under the membrane), the amplitude of the transient Cl- current induced by the second injection is several-fold higher than that of the first one. This 'potentiation' persists even at 60-90 min intervals between injections. However, in oocytes permeabilized to Ca2+ by the ionophore A23187 in a Ca2(+)-free solution, the potentiation completely disappears after 30 min. It is proposed that the injected Ca2+ is largely taken up by the stores, whereas following the second injection, a higher proportion of Ca2+ reaches the membrane, since the stores are already loaded. In ionophore-treated oocytes, the stores lose the accumulated Ca2+ over several minutes and are then ready to take up Ca2+ again, hindering its arrival at the membrane.  相似文献   

16.
Proline absorption across small intestine takes place mainly through a Na+-dependent cotransporter localized at the brush border membrane of the enterocyte named IMINO system. It transports L-proline and 4-OH-proline but not L-alanine, neither cationic nor anionic amino acids. The present work demonstrates the functional expression of this transporter in Xenopus laevis oocytes by mRNA microinjection and radiotracer uptake techniques. Poly (A)+-RNA was isolated from rabbit jejunal mucosa and injected into oocytes. Five days after the injection, results showed 1.5 fold stimulation of 50 microM 3H-proline uptake by the injected oocytes when compared to the non injected oocytes uptake. Poly (A)+-RNA was sized fractionated and fractions were injected again. Increase on Na+-dependent L-proline uptake was obtained with a mRNA fraction between 2,4 and 4,4 kb, which was used to construct a cDNA library. The library was sequentially divided and cRNAs injected into oocytes in order to screen for an increment on the signal. A subdivision containing around 2,000 colonies was found to augment L-proline uptake 25 fold over the non injected oocytes uptake. This cRNA pool was used to further characterize the transporter. Results showed that in the absence of Na+ there was no L-proline uptake, 2 mM 4-OH-L-proline completely inhibited 50 microM proline uptake and there was no 50 microM alanine uptake. In summary, these results demonstrate the expression of the rabbit small intestine IMINO transporter in Xenopus laevis oocytes and support the next steps in the isolation of the clone.  相似文献   

17.
In order to compare the importance of Na(+)-Ca2+ exchange in the regulation of cytosolic Ca2+ concentration (Ca2+i), acini obtained from rat pancreas and submandibular glands as well as cardiac myocytes were loaded with Na+ by inhibition of Na(+)-K+ ATPase activity then loaded with fura-2. In the exocrine tissues, incubation in K(+)-free buffer or with ouabain had no substantial effect on resting Ca2+i or on the changes in Ca2+i following exposure to carbachol as compared with acini incubated under control conditions. In contrast, rat cardiac myocytes, treated identically, showed marked changes in Ca2+i under resting and stimulated conditions as compared with controls. We conclude that the Na(+)-Ca2+ exchange systems of rat pancreatic and submandibular gland acini contribute little to the overall regulation of Ca2+i at rest during cholinergic stimulation.  相似文献   

18.
We examined the effect of phorbol myristate acetate (PMA), a potent activator of protein kinase C, on Ca2+ extrusion from cultured vascular smooth muscle cells (VSMCs) incubated in the absence of added extracellular Na+ (Na+o). Previously, strong experimental evidence was presented that the Na+o-independent Ca2+ extrusion from VSMCs is effected by the plasma membrane Ca2+ pump (Furukawa, K.-I., Tawada, Y., and Shigekawa, M. (1988) J. Biol. Chem. 263, 8058-8065). Brief (2 min) pretreatment of VSMCs with 30-300 nM PMA suppressed the intracellular Ca2+ transient induced with 1 microM ionomycin to about 60% of the control, whereas it accelerated the concomitant Na+o-independent 45Ca2+ extrusion by up to 20%. When the Ca2+ transient was induced with 0.1 microM angiotensin II, the PMA pretreatment markedly suppressed it and reduced also the rate of 45Ca2+ efflux from cells slightly. These effects of PMA were mimicked by 1-oleoyl-2-acetylglycerol, another protein kinase C activator, but were abolished by prior treatment of cells with staurosporine, an inhibitor of protein kinase C, or prior long incubation of cells with PMA. Analysis of the effect of PMA on [Ca2+]i dependence of the rate of Na+o-independent 45Ca2+ efflux revealed that PMA increased the maximum Ca2+ efflux rate without a significant change in the affinity for Ca2+. These results strongly suggest that the plasma membrane Ca2+ pump in VSMCs can be stimulated by PMA and that protein kinase C is involved in regulation of [Ca2+]i in intact VSMCs.  相似文献   

19.
We investigated the mechanisms of Ca2+ extrusion from cultured rat aortic smooth muscle cells while monitoring changes in the cytosolic Ca2+ concentration ([Ca2+]i) using fura 2 fluorescence. 45Ca2+ efflux from these cells consisted of two major mechanisms; one was dependent on the extracellular sodium concentration (Na+o) and the other was independent of Na+o. Na+o-dependent efflux increased monotonically with increasing [Ca2+]i between 0.1 and 1.0 microM, whereas Na+o-independent efflux reached a plateau at 0.6-1 microM [Ca2+]i with a half-maximum obtained at about 0.16 microM. At [Ca2+]i below 1 microM, the latter was significantly greater than the former. Unlike the Na+o-dependent mechanism, Na+o-independent 45Ca2+ efflux was inhibited almost entirely by extracellularly added La3+ or a combination of high extracellular pH (pH 8.8) and 20 mM Mg2+. It was also inhibited, although not completely, by compound 48/80, a calmodulin antagonist, and vanadate. These results strongly suggest that Na+o-dependent and Na+o-independent 45Ca2+ effluxes occur via the Na+/Ca2+ exchanger and the ATP-dependent Ca2+ pump, respectively. Sodium nitroprusside and atrial natriuretic factor, which are agents that stimulate intracellular production of cGMP, and 8-BrcGMP significantly accelerated the Na+o-independent 45Ca2+ efflux especially at low [Ca2+]i. Forskolin, dibutyryl cAMP, and 8-Br-cAMP, however, showed no stimulation. These results suggest that the plasma membrane Ca2+ pump is regulated by cGMP but not by cAMP in intact vascular smooth muscle cells.  相似文献   

20.
This study investigated the effects of electrical stimulation on Na+-K+-ATPase isoform mRNA, with the aim to identify factors modulating Na+-K+-ATPase mRNA in isolated rat extensor digitorum longus (EDL) muscle. Interventions designed to mimic exercise-induced increases in intracellular Na+ and Ca2+ contents and membrane depolarization were examined. Muscles were mounted on force transducers and stimulated with 60-Hz 10-s pulse trains producing tetanic contractions three times at 10-min intervals. Ouabain (1.0 mM, 120 min), veratridine (0.1 mM, 30 min), and monensin (0.1 mM, 30 min) were used to increase intracellular Na+ content. High extracellular K+ (13 mM, 60 min) and the Ca2+ ionophore A-23187 (0.02 mM, 30 min) were used to induce membrane depolarization and elevated intracellular Ca2+ content, respectively. Muscles were analyzed for Na+-K+-ATPase alpha1-alpha3 and beta1-beta3 mRNA (real-time RT-PCR). Electrical stimulation had no immediate effect on Na+-K+-ATPase mRNA; however at 3 h after stimulation, it increased alpha1, alpha2, and alpha3 mRNA by 223, 621, and 892%, respectively (P = 0.010), without changing beta mRNA. Ouabain, veratridine, and monensin increased intracellular Na+ content by 769, 724, and 598%, respectively (P = 0.001) but did not increase mRNA of any isoform. High intracellular K+ concentration elevated alpha1 mRNA by 160% (P = 0.021), whereas A-23187 elevated alpha3 mRNA by 123% (P = 0.035) but reduced beta1 mRNA by 76% (P = 0.001). In conclusion, electrical stimulation induced subunit-specific increases in Na+-K+-ATPase mRNA in isolated rat EDL muscle. Furthermore, Na+-K+-ATPase mRNA appears to be regulated by different stimuli, including cellular changes associated with membrane depolarization and increased intracellular Ca2+ content but not increased intracellular Na+ content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号