首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims This study aimed to document and describe the current range expansion of the great‐tailed grackle (Quiscalus mexicanus Gmelin) into the USA. By examining the habitat associations and pattern of spread of this species, I intended to determine the factors responsible for this remarkable expansion by a tropical species into a temperate environment. Location This study focused on the spread of the great‐tailed grackle in the continental USA, Canada and Baja California. Methods I used published records, museum specimens, and egg collections to document this range expansion from 1880 through 2002. In addition I surveyed large portions of Arizona, Nevada, southern Utah and southern California for great‐tailed grackles during 2000 and 2001. The data gathered was used to create maps in order to quantify the rate of spread of this species. Results Between 1880 and 2000 the great‐tailed grackle expanded its breeding range in the USA from c. 64,000 km2 to more than 3,561,000 km2, an increase of 5530%. The average annual rate of increase is 3.4%, but has lessened during the past 20 years. Northward movement in the eastern portion of the range has slowed down, reflecting this decrease. However, in the central and western portion of the species range, the rate of northward movement is still accelerating. During this expansion, the average time between first sighting in a state and first breeding was 5.8 years. The species has become less migratory during its range expansion, wintering in 17 of the 20 states where it breeds. Main conclusions This range expansion has been marked by great‐tailed grackles preferring human‐modified environments as breeding grounds, especially in the western states. This association appears to benefit the species in two ways; nest predation is lessened in such areas compared with natural conditions, whereas human activities tend to generate an abundant and consistent food supply for feeding offspring. Wintering birds are often associated with cattle feed lots and large‐scale dairies, where abundant waste grain provides them with a reliable food supply. Given the continued human population increase throughout large areas of the western USA, the great‐tailed grackle will continue its range expansion.  相似文献   

2.
Introduced species offer unique opportunities to study evolution in new environments, and some provide opportunities for understanding the mechanisms underlying macroecological patterns. We sought to determine how introduction history impacted genetic diversity and differentiation of the house sparrow (Passer domesticus), one of the most broadly distributed bird species. We screened eight microsatellite loci in 316 individuals from 16 locations in the native and introduced ranges. Significant population structure occurred between native than introduced house sparrows. Introduced house sparrows were distinguished into one North American group and a highly differentiated Kenyan group. Genetic differentiation estimates identified a high magnitude of differentiation between Kenya and all other populations, but demonstrated that European and North American samples were differentiated too. Our results support previous claims that introduced North American populations likely had few source populations, and indicate house sparrows established populations after introduction. Genetic diversity also differed among native, introduced North American, and Kenyan populations with Kenyan birds being least diverse. In some cases, house sparrow populations appeared to maintain or recover genetic diversity relatively rapidly after range expansion (<50 years; Mexico and Panama), but in others (Kenya) the effect of introduction persisted over the same period. In both native and introduced populations, genetic diversity exhibited large-scale geographic patterns, increasing towards the equator. Such patterns of genetic diversity are concordant with two previously described models of genetic diversity, the latitudinal model and the species diversity model.  相似文献   

3.
Solar radiation is a major source of heat for open-cup passerine nestlings, and a key variable influencing parental nest site selection. Although temperature, like food, is critical for nestling growth and survival, the use of thermal and insolation gradients when describing passerine nestling orientation and movement within the open-cup nest has not been explored. Our study used the Common Grackle (Quiscalus quiscula) as a model system to directly test the hypothesis that passerine nestlings mitigate thermal extremes behaviourally. Pairs of nestlings were tested in shaded (homogeneous) and exposed (heterogeneous) nests, movements within nests were tracked and nest temperatures recorded. Our results show that nestlings are able to detect and respond to nanoclimate heterogeneity, and can mitigate short-term radiant heat loads through shade-seeking.  相似文献   

4.

Aim

Knowledge of expanding and contracting ranges is critical for monitoring invasions and assessing conservation status, yet reliable data on distributional trends are lacking for most freshwater species. We developed a quantitative technique to detect the sign (expansion or contraction) and functional form of range‐size changes for freshwater species based on collections data, while accounting for possible biases due to variable collection effort. We applied this technique to quantify stream‐fish range expansions and contractions in a highly invaded river system.

Location

Upper and middle New River (UMNR) basin, Appalachian Mountains, USA.

Methods

We compiled a 77‐year stream‐fish collections dataset partitioned into ten time periods. To account for variable collection effort among time periods, we aggregated the collections into 100 watersheds and expressed a species’ range size as detections per watershed (HUC) sampled (DPHS). We regressed DPHS against time by species and used an information‐theoretic approach to compare linear and nonlinear functional forms fitted to the data points and to classify each species as spreader, stable or decliner.

Results

We analysed changes in range size for 74 UMNR fishes, including 35 native and 39 established introduced species. We classified the majority (51%) of introduced species as spreaders, compared to 31% of natives. An exponential functional form fits best for 84% of spreaders. Three natives were among the most rapid spreaders. All four decliners were New River natives.

Main conclusions

Our DPHS‐based approach facilitated quantitative analyses of distributional trends for stream fishes based on collections data. Partitioning the dataset into multiple time periods allowed us to distinguish long‐term trends from population fluctuations and to examine nonlinear forms of spread. Our framework sets the stage for further study of drivers of stream‐fish invasions and declines in the UMNR and is widely transferable to other freshwater taxa and geographic regions.
  相似文献   

5.
6.
Aim Apparent anthropogenic warming has been underway in South Africa for several decades, a period over which significant range shifts have been observed in some indigenous bird species. We asked whether these range shifts by birds are clearly consistent with either climate change or land use change being the primary driver. Location South Africa. Methods We categorized recent range changes among 408 South African terrestrial bird species and, using generalized linear mixed models, analysed ecological attributes of those species that have and have not changed their ranges. Results Fifty‐six of the 408 taxa studied have undergone significant range shifts. Most extended their ranges towards the south (towards cooler latitudes, consistent with climate‐change drivers) or west (towards drier and warmer habitats, inconsistent with climate drivers but consistent with land use drivers); very few moved east or north. Both southward and westward movers were habitat generalists. Furthermore, southward movers were mobile taxa (migrants and nomads), whereas westward movers were associated with human‐modified elements in the landscape, such as croplands, plantations or buildings. Main conclusions The results suggest that both land use changes and climate change may simultaneously be influencing dynamic range shifts by South African birds, but separating the relative strengths of these two drivers is challenging, not least because both are operating concurrently and may influence some species simultaneously. Those species that respond to land use change by contracting their ranges are likely to be among the species that will be most impacted by climate change if land use practices with negative impacts are occurring in areas anticipated to become climatic refugia for these species. This highlights a pressing need to develop dynamic models of species’ potential range shifts and changing abundances that incorporate population and dispersal processes, as well as ecological processes that influence habitat suitability.  相似文献   

7.
Aim Coyote (Canis latrans) distribution in Mexico and Central America has expanded recently reaching the Yucatan peninsula, Belize and Panama, probably promoted by deforestation of tropical areas. Historically, the southern distribution of coyotes prior to European settlement in America was described as reaching only as far south as central Mexico and that introduction of livestock favoured migration of coyotes to southern Mexico and Central America. However, coyote fossil records in Central America and Yucatan, as well as observational records of travellers during the sixteenth century suggest that the coyote's arrival to the region was earlier. Because of the uncertainty of past coyote distribution and the possible economic and ecological impacts due to recent range expansion, the objectives of this study were to confirm if paleontological and historical evidence support the hypothesis that the southernmost limit of coyote distribution before the arrival of European settlers was the centre of Mexico, to discuss the possible factors that have influenced historical shifts in coyote distribution, and to model the present distribution of the coyote in Mexico and Central America, determining the areas where they could invade in the near future. Location The research area comprises continental Mexico and the Central American Isthmus countries: Guatemala, Belize, El Salvador, Honduras, Nicaragua, Costa Rica and Panama. Methods The historical distribution (Pleistocene–Early Holocene, Pre‐Columbian, sixteenth to nineteenth centuries and twentieth century) was established from coyote records obtained from museum collections and specialized literature. Present coyote distribution for Mexico and Central America was modelled using the Genetic Algorithms for Rule‐set Prediction (GARP). Results Historical coyote records show that this species was distributed in southern Mexico and Central America during the Pleistocene–Early Holocene, the Pre‐Columbian period, and during the arrival of Europeans in the sixteenth century. Coyote records indicate a continuous range expansion during the twentieth century. Historical advance and regression of tropical forests in southern Mexico and Central America produced by natural and human events such as climatic changes and variation in human densities could help us understand the historical coyote distribution. The modelled present‐day coyote distribution included the north of Belize, the north of Panama, the north of the Yucatan Peninsula and a corridor on the Gulf costal plain of Campeche in Mexico. Also, the model predicted a region north of the Darien in southern Panama as appropriate for the presence of coyotes, although they have not been detected there so far. Main conclusion Coyote records in southern Mexico and Central America during the Pleistocene–Early Holocene, the Pre‐Columbian period, and early arrival of European settlers to the area indicated that coyotes were probably already present there and did not recently disperse from the north of Mexico to the south due to livestock introduction.  相似文献   

8.
To document and update the mosquito species of Tabasco, Mexico, field collection trips were conducted in the two physiographic regions of Tabasco: the coastal plain of the southern gulf and the mountains of Chiapas and Guatemala. Mosquitoes were collected as immature and adult stages during the dry and rainy seasons from 2014 through 2015. Additionally, the Reference Collection of Arthropods of Medical Importance (CAIM‐InDRE) containing mosquitoes of Tabasco was re‐examined. In total, 4,913 specimens were collected and examined, which are divided into seven tribes, 18 genera, 27 subgenera, and 104 species. Of these, one genus (Shannoniana Lane and Cerqueira), two subgenera (Georgecraigius Reinert, Harbach and Kitching, and Carrollia Lutz), and 21 species are new records for the mosquito fauna of Tabasco. Culex metempsytus Dyar is a new record for Mexico and Wyeomyia jocosa (Dyar and Knab) is removed from the Mexican mosquito fauna. Seventeen species historically reported were not found in the field collections conducted here. Taxonomic notes, new distribution limits, and comments about the medical importance of species of mosquitoes of Tabasco are discussed. Tabasco is the second state in Mexico with the largest mosquito richness (104 species), followed by Veracruz with 139 species.  相似文献   

9.
Natural and anthropogenic processes are causing extensive and rapid ecological, social, and economic changes in arid and semiarid ecosystems worldwide. Nowhere are these changes more evident than in the Great Basin of the western United States, a region of 400,000 km2 that largely is managed by federal agencies. Major drivers of ecosystems and human demographics of the Great Basin include human population growth, grazing by domestic livestock, extraction of minerals, development and production of energy, changes in fire and other disturbance regimes, and invasion of non-native annual plants. Exploration of alternative futures may increase the ability of management and policy to maximize the system's resistance and resilience to changes in climate, disturbance regimes, and anthropogenic perturbations. This special section examines the issues facing the Great Basin and then provides examples of approaches to predicting changes in land cover and avifaunal distributions under different management scenarios. Future sustainability of the Great Basin's natural and human systems requires strong, collaborative partnerships among research and management organizations that are capable of obtaining public support and financial resources and developing effective policies and institutional mechanisms.  相似文献   

10.
Past and ongoing vertebrate introductions threaten to rearrange ecological communities in the Indo‐Malay Archipelago, one of Earth's most biodiverse regions. But the consequences of these translocations are difficult to predict. We compared local abundance and distributions in four tropical mammal lineages that have crossed from Asia to Wallacea or New Guinea. The local abundance of macaques (Macaca spp.), which naturally crossed Wallace's Line, was higher in Sulawesi (east of the line; mean = 3.7 individuals per camera station, 95% CI = 2.2: 5.1) than in Borneo (west of the line; mean = 1.1, CI = 0.8: 1.4), but the local abundance of Malay civets (Viverra tangalunga), Rusa deer, and Sus pigs was similar in their native ranges and where they had been introduced by humans east of Wallace's Line. Proximity to rivers increased Malay Civet local abundance and decreased the local abundance of pigs in parts of their introduced ranges (Maluku and New Guinea, respectively), while having no effect on local abundance in their native ranges (Borneo) or other areas where they have been introduced (Sulawesi). That local abundance was higher east of Wallace's Line in just one of four mammal lineages is consistent with findings from plant invasions, where most species have similar abundance in their native and introduced ranges. However, species’ ecology may change as they enter new communities, for example, their patterns of abundance at local scales. This could make it difficult to predict community structure in the face of ongoing species introductions.  相似文献   

11.
Highly aroused or scared animals may produce a variety of sounds that sound harsh and are somewhat unpredictable. These sounds frequently contain nonlinear acoustic phenomena, and these nonlinearities may elicit arousal or alarm responses in humans and many animals. We designed a playback experiment to elucidate whether specific nonlinear phenomena can elicit increased responsiveness in great‐tailed grackles (Quiscalus mexicanus). We broadcast two control sounds (a 0.5‐s, 3‐kHz pure tone and the song of tropical kingbirds (Tyrannus melancholicus) and three test sounds that all began with a 0.4‐s, 3‐kHz pure tone and ended with 0.1 s of either a 1‐ to 5‐kHz band of white noise, an abrupt frequency jump to 1 kHz, or an abrupt frequency jump to 5 kHz. In response to these three nonlinear phenomena, grackles decreased their relaxed behavior (walking, foraging, and preening) and increased looking. A second experiment looked at the rapidity of the time course of frequency change and found that the abrupt frequency jump from 3 to 1 kHz, as opposed to a gradual downward frequency modulation over the same bandwidth, was uniquely arousing. These results suggest that while nonlinear phenomena may be generally evocative, frequency jumps may be the most evocative in great‐tailed grackles. Future studies in other systems can evaluate this general hypothesis.  相似文献   

12.
A decade ago in a seminal monograph, Anne Kirkby proposed a model of colonization for the prehispanic Valley of Oaxaca, Mexico, in which settlement location was determined by the distribution of prime agricultural land. The model was tested against the corpus of known prehispanic settlements and tentative support was found. In the years since this study, a systematic archeological settlement pattern project was completed, making a more adequate test of the model possible. Reexamination of the colonization process suggests that, although agricultural considerations were important, they were less determinant of settlement location than had been implied previously. The adoption of a broader perspective toward regional colonization is suggested.  相似文献   

13.
Aim Shifts in species ranges are a predicted and realized effect of global climate change; however, few studies have addressed the rates and consequence of such shifts, particularly in marine systems. Given ecological similarities between shifting and introduced species, we examined how our understanding of range shifts may be informed by the more established study of non‐native species introductions. Location Marine systems world‐wide. Methods Database and citation searches were used to identify 129 marine species experiencing range shifts and to determine spread rates and impacts on recipient communities. Analyses of spread rates were based on studies for which post‐establishment spread was reported in linear distance. The sizes of the effects of community impacts of shifting species were compared with those of functionally similar introduced species having ecologically similar impacts. Results Our review and meta‐analyses revealed that: (1) 75% of the range shifts found through the database search were in the poleward direction, consistent with climate change scenarios, (2) spread rates of range shifts were lower than those of introductions, (3) shifting species spread over an order of magnitude faster in marine than in terrestrial systems, and (4) directions of community effects were largely negative and magnitudes were often similar for shifters and introduced species; however, this comparison was limited by few data for range‐shifting species. Main conclusions Although marine range shifts are likely to proceed more slowly than marine introductions, the community‐level effects could be as great, and in the same direction, as those of introduced species. Because it is well‐established that introduced species are a primary threat to global biodiversity, it follows that, just like introductions, range shifts have the potential to seriously affect biological systems. In addition, given that ranges shift faster in marine than terrestrial environments, marine communities might be affected faster than terrestrial ones as species shift with climate change. Regardless of habitat, consideration of range shifts in the context of invasion biology can improve our understanding of what to expect from climate change‐driven shifts as well as provide tools for formal assessment of risks to community structure and function.  相似文献   

14.
Hemidactylus frenatus is an Asian gecko that has spread pantropically to become one the world's most widespread reptiles. It has been established in Australia for approximately 50 years, but the last two decades have seen massive range expansion across settled areas of northern and eastern Australia; and this spread continues at pace. Disturbingly, H. frenatus is increasingly being detected in natural habitats in Australia, in some cases at high densities. Despite rampant spread, there has been little concern regarding the potential impact of this species on native geckos or natural systems more broadly. This is surprising given that Australia is a centre of gecko origin and diversity, and that H. frenatus has had well documented detrimental impacts on geckos in other parts of its introduced range. Here I review the biology and global distribution of H. frenatus, plot its spread in Australia over the five decades since establishment, and review the research on invasive populations of this species overseas and in Australia to assess potential impacts. I argue that Australia should be more concerned about H. Frenatus because: (i) it is spreading rapidly across northern, eastern and central Australia; (ii) it can invade natural habitats; (iii) it is a very strong competitor and may out‐compete Australian geckos in some situations; and (iv) it carries novel parasites that may impact native reptile species. Hemidactylus frenatus is here to stay and represents a potential threat to Australia's diversity and ecology. A key question is the degree to which it will invade natural habitats and what its impacts will be in these. Research is required to assess the current and potential impacts of H. frenatus in Australia so as to determine how these can be managed and the level of investment warranted.  相似文献   

15.
Changes in land use have a major effect on patterns of biodiversity. However, few studies have examined the demographic and genetic shifts associated with a return to semi‐natural habitat following extended periods of human disturbance. Here we examine patterns of population structure in a spider restricted to the Pacific coastal strip of North America that exhibits an exuberant colour polymorphism. We use mitochondrial DNA and AFLP markers to examine genetic structure and estimate gene flow. The results show contrasting, gender‐specific patterns between these markers that suggest limited dispersal, combined with area effects most likely caused by expansion from refugial habitat patches following land‐management changes in a region of the San Francisco East Bay. Colour‐morph frequencies are not correlated with this complex genetic structure. Thus, unlike the classical area effects that were based on colour morphs, we demonstrate in T. californicum signals of historical contingency at neutral loci but not at the Colour locus, where traces of past events have been obliterated by balancing selection. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 600–620.  相似文献   

16.
17.
Aim Humans have dramatically transformed landscapes along the US–Mexico border. We aim to assess the risk of barriers that may significantly impede animal migrations within this ecologically sensitive region. Location United States and Mexico. Methods We examined the intersection of current and possible future barriers along the border with the geographic ranges of 313 amphibian, reptile and non‐volant mammal species. We considered the areas of intensive human land use and ~ 600 km of pedestrian fence as current barriers along the border. We evaluated the impacts of two scenarios of dispersal barriers – continuation of existing and construction of new barriers – and identified species vulnerable to global and local extinction. Results Among the species most at risk from current barriers are four species listed as threatened globally or by both nations, 23 species for which the larger of their two national subranges is < 105 km2 and 29 species whose ranges cross the border only marginally. Three border regions, California, Madrean archipelago and Gulf coast, emerge as being of particular concern. These regions are characterized by high overall species richness and high richness of species at risk from existing barriers and from construction of potential new barriers. Main conclusions New barriers along the border would increase the number of species at risk, especially in the three identified regions, which should be prioritized for mitigation of the impacts of current barriers. The species we identified as being potentially at risk merit further study to determine impacts of border dispersal barriers.  相似文献   

18.
The future distribution of river fishes will be jointly affected by climate and land use changes forcing species to move in space. However, little is known whether fish species will be able to keep pace with predicted climate and land use‐driven habitat shifts, in particular in fragmented river networks. In this study, we coupled species distribution models (stepwise boosted regression trees) of 17 fish species with species‐specific models of their dispersal (fish dispersal model FIDIMO) in the European River Elbe catchment. We quantified (i) the extent and direction (up‐ vs. downstream) of predicted habitat shifts under coupled “moderate” and “severe” climate and land use change scenarios for 2050, and (ii) the dispersal abilities of fishes to track predicted habitat shifts while explicitly considering movement barriers (e.g., weirs, dams). Our results revealed median net losses of suitable habitats of 24 and 94 river kilometers per species for the moderate and severe future scenarios, respectively. Predicted habitat gains and losses and the direction of habitat shifts were highly variable among species. Habitat gains were negatively related to fish body size, i.e., suitable habitats were projected to expand for smaller‐bodied fishes and to contract for larger‐bodied fishes. Moreover, habitats of lowland fish species were predicted to shift downstream, whereas those of headwater species showed upstream shifts. The dispersal model indicated that suitable habitats are likely to shift faster than species might disperse. In particular, smaller‐bodied fish (<200 mm) seem most vulnerable and least able to track future environmental change as their habitat shifted most and they are typically weaker dispersers. Furthermore, fishes and particularly larger‐bodied species might substantially be restricted by movement barriers to respond to predicted climate and land use changes, while smaller‐bodied species are rather restricted by their specific dispersal ability.  相似文献   

19.
Abstract The impact of introduced ship rats (Rattus rattus) on recruitment of the megaherb Pleurophyllum hookeri Buchan. (Asteraceae) was examined on subantarctic Macquarie Island, an island with no extant native terrestrial vertebrates. Pleurophyllum hookeri (Asteraceae) forms a dominant component of the Macquarie Island vegetation and is restricted to the subantarctic. The Macquarie Island population of P. hookeri is the most extensive and intact. Introduced ship rats (Rattus rattus) are well established in tall tussock grassland of Macquarie Island. We detected rat activity for the first time within P. hookeri herbfields, in autumn 2000. We found rats were destroying up to 90% of racemes. By excluding rats from caches of inflorescences that they had formed, we found they were having a significant negative effect on initial recruitment and seedling survival within the caches. However, because of high seedling mortality after 1 year, there was no sustained impact of the exclosures on P. hookeri seedling density.  相似文献   

20.
We present evidence indicating that the boa (Boa constrictor) was introduced onto Cozumel Island, Quintana Roo, Mexico, in 1971. This snake is now firmly established and has a wide distribution on Cozumel. We recorded an encounter rate of 1.8 boas per 100 km of forest surveyed. The introduction of the boa onto Cozumel, where it has few predators, is a threat to the existence of endemic and other native terrestrial vertebrates of the island. We recommend the following immediate actions: (1) undertake research to confirm the origin of the boa on Cozumel; (2) assess the effect of the boa on the biota of Cozumel; and, (3) if an anthropogenic origin is confirmed, an eradication programme for the boa on Cozumel should be undertaken, obtaining information on the biology and ecology of the species. Options for the destiny of the eradicated boas are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号