首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The methanogenic activity in the presence of Entodinium caudatum and Epidinium ecaudatum was well preserved after long-term cultivation. Microscopic observation revealed that methane production in the presence of E. caudatum was probably caused by their intracellular methanogenic activity, while methane production in the presence of E. ecaudatum f caudatum et ecaudatum could be attributed to both the methanogenic bacterial fraction of their external surface and their intracellular activity. Methane production per protozoan cell of E. caudatum and E. ecaudatum was 2.1 nmol per cell per d and 6.0 nmol per cell per d, respectively. E. caudatum was responsible for almost the entire methane production in the culture. The activity of free methanogens constituted approximately 50% of the total methane production in the E. ecaudatum culture. Decrease of digestibility of substrates and differences in the fermentation end products accompanied the inhibition of methanogenesis in both cultures by penicillin G, streptomycin, chloramphenicol, 2-bromoethanesulfonate, and pyromellitic diimide. E. caudatum appeared to be more sensitive than E. ecaudatum to the compounds tested. Hydrogen recoveries based on both volatile fatty acids and methane production suggested that the methanogenic population appeared not to be fully able to consume hydrogen produced in the protozoan cultures. The culture conditions tested were found to be suitable for experiments on the relationship between rumen ciliates and rumen bacteria.  相似文献   

2.
SYNOPSIS. In cattle fed a high-starch diet, species of Entodinium and Diplodinium ingested associated ruminal bacteria. Stained preparations of diluted rumen contents showed Entodinium caudatum, E. minimum, E. dubardi , (syn. E. simplex ), E. longinucleatum, E. bursa, E. nanellum, E. exiguum , and E. vorax contained gram-positive diplococci. Starch grains with adherent gram-positive diplococci were observed within Entodinium spp. Diplodinium ecaudatum forma ecaudatum, D. ecaudatum forma caudatum, D. neglectum and an unidentified species of Diplodinium also ingested ruminal diplococci. Bacteria were isolated from mixed species of Entodinium by washing and culturing the protozoa in a starch feed-extract agar medium. The strains isolated from the ciliates were gram-positive diplococci, 0.8 times 1–1.5 μm, which attached themselves to starch granules and were able to digest the starch. Conclusive evidence of bacterial ingestion by the oligotrichs was obtained by providing the bacterial cultures to Entodinium species ( E. dubardi and E. minimum ) which had been starved 24 hr. Gram-stained preparations showed the ciliates readily ingested the bacteria. The amylolytic cocci utilized by Entodinium spp. were identified as Streptococcus bovis.  相似文献   

3.
The rumen ciliate Ophryoscolex caudatus fermented starch with the production of acetic, butyric, and lactic acids plus CO2 and H2. Cellulose was not significantly metabolized although pectin was rapidly attacked in the Warburg apparatus. The protein sources, cottonseed, soybean, and linseed oil meals, and the amino acids, dl-alanine, dl-valine, and dl-leucine, were utilized by the protozoan, whereas ammonia was demonstrated as an end product of nitrogenous metabolism. Methods for the separation of O. caudatus from mixed rumen contents are described.  相似文献   

4.
The crude protein content and amino acid profile of seven feedstuffs (linseed meal, maize gluten meal, rapeseed meal, rapeseed meal protected, soybean meal, fullfat soybean extruded and sunflower meal) were determined before and after ruminal incubation for 16h in three bulls with large rumen cannulas. The intestinal disappearance of amino acids was measured using mobile bag technique. Ruminal incubation affected amino acid profile of all experimental feedstuffs. Crude protein degradation varied from 29.3% for maize gluten meal to 86.4% for rapeseed meal. A tendency towards increased disappearance was observed for glutamic acid, histidine, lysine and proline and decreased disappearance for branched-chain amino acids. The intestinal crude protein digestibility was higher than >80%, except rapeseed meal (66.4%) and sunflower meal (77.8%). The least digestible individual amino acids were methionine and isoleucine in rapeseed meal, histidine and methionine in rapeseed meal protected and arginine in sunflower meal. In general, the lowest amino acid digestibilities were found in feedstuffs with the highest fibre content. The feedstuffs show that they have different potential for supplying of limiting amino acids. Of particular value are the feedstuffs with low crude protein degradability in the rumen and high intestinal digestibility of amino acids.  相似文献   

5.
Effects of fatty acids of linseed in different forms, on ruminal fermentation and digestibility were studied in dry cows fitted with ruminal and duodenal cannulas. Four diets based on maize silage, lucerne hay and concentrates (65/10/25 dry matter (DM)) were compared in a 4 × 4 Latin square design experiment where the diets were: control diet (C), diet RL supplied 75 g/kg DM rolled linseeds, diet EL supplied 75 g/kg DM extruded linseeds, and diet LO supplied 26 g/kg DM linseed oil and 49 g/kg DM linseed meal. The diets did not differ in total organic matter (OM) and fibre digestibility, in forestomach and intestinal OM digestibility, and in duodenal N flow. Microbial N duodenal flow tended to be lower for RL versus C diet (P<0.1). Extrusion did not reduce ruminal crude protein (CP) degradation in vivo and in situ. Volatile fatty acid concentration and pattern, and protozoa concentration in the rumen, did not vary among diets. Results confirm the absence of a negative effect of a moderate supply of linseed on rumen function, as well as no effect of extrusion on its ruminal CP degradability.  相似文献   

6.
The objective of the study was to investigate the influence of two roughage-to-concentrate ratios, with or without linseed oil supplementation, on the flow of fatty acids in the intestinal chyme and the secretion in milk fat in late lactating cows. Seven late lactating cows fitted with cannulae in the dorsal rumen and simple T-shaped cannulae in the proximal duodenum were randomly assigned to four experimental periods applying an incomplete replicated 2 x 2 Latin square design. The rations consisted of meadow hay and a concentrate mixture given in a ratio of 70:30 or 30:70 on dry matter basis. The basal rations were fed without or with 200 g linseed oil daily. After three weeks of adaptation, samples from the duodenal chyme were taken to study the flow of fatty acids. Additionally, milk samples were analysed for their milk fat composition. Decreasing roughage/concentrate ratio and linseed oil supplementation significantly increased the flow of monounsaturated fatty acids (MUFA), trans-fatty acids (tFA) and conjugated linoleic acids (CLA) in the duodenum. Furthermore, linseed oil increased the flow of saturated fatty acids (SFA) in the duodenum. Higher concentrate portion (H 30) and linseed oil supplementation significantly decreased the milk fat content. SFA were lower (p < 0.05) and MUFA were higher (p < 0.05) in milk fat after linseed oil supplementation; H 30 resulted in more polyunsaturated fatty acids (PUFA, p < 0.05) in the milk. Linseed oil supplementation significantly increased tFA and CLA in milk fat. The higher CLA content in milk fat as compared to that in the digesta suggests that a substantial endogenous synthesis of CLA in the mammary gland tissue through A9-desaturase took place. Between 21% and 48% of duodenal t11-C(18:1) were converted into c9, t11-CLA in milk fat.  相似文献   

7.
A feeding trial was conducted for 8 weeks to examine the effects of partial substitution of fish meal (FM) protein (crude protein content: 58.5%) with linseed meal protein with and without supplemental amino acids in diets for rohu Labeo rohita (Hamilton), fingerlings (mean weight: 1.50 ± 0.3 g). Prior to incorporation into the diets, linseed meal was fermented with lactic acid bacteria ( Lactobacillus acidophilus ) to reduce/eliminate the antinutritional tannin and phytic acid factors. Twelve experimental diets (diets D1–D12) were formulated to replace the FM protein from a reference diet (RD) with linseed meal protein at different levels (four sets of diets, of which each set of three diets contained 25%, 50% and 75% replacement of FM protein by linseed meal protein, respectively). Diets D1–D3 were not supplemented with any amino acid. Lysine was supplemented in diets D4–D6. Diets D7–D9 were supplemented with methionine + cystine (together), and diets D10–D12 contained lysine and methionine + cystine (together). Lysine and methionine + cystine (together) were added to the diets at 5.7% and 3.1% of dietary protein, respectively. The groups of fish fed diets without amino acid supplementation had significantly lower percentages of weight gain, specific growth rate and high feed : gain ratio than the fish groups fed other experimental diets. The addition of lysine and methionine + cystine to the diet in which 50% of the FM protein was replaced by linseed meal protein (diet D11) significantly improved fish performance. The results of the present study suggest that rohu fingerlings can effectively utilize the supplemented amino acids and that linseed meal protein can replace up to 50% of the FM protein in rohu diets if the linseed meal is properly processed (fermented) and supplemented with the lacking amino acids.  相似文献   

8.
A study has been made of the promoting effect of starch on cellulose digestion by mixed rumen bacteria in a cellulose-urea medium. Starch supplementation of the medium promoted the growth of bacteria that required neither amino acids (AA) nor branched-chain fatty acids (BrFA). The growth of these bacteria was followed by the growth of AA-dependent bacteria, AA- or BrFA-dependent bacteria, BrFA-producing bacteria, and finally, BrFA-dependent cellulolytic bacteria. Population changes of these bacterial groups corresponded with a cross-feeding of AA and BrFA and the overall disappearance of cellulose. The data suggest that the nutritional interdependence among rumen bacteria affects the rate of cellulose digestion.  相似文献   

9.
The objective of this study was to evaluate changes in ruminal microorganisms and fermentation parameters due to dietary supplementation of soybean and linseed oil alone or in combination. Four dietary treatments were tested in a Latin square designed experiment using four primiparous rumen-cannulated dairy cows. Treatments were control (C, 60 : 40 forage to concentrate) or C with 4% soybean oil (S), 4% linseed oil (L) or 2% soybean oil plus 2% linseed oil (SL) in a 4 × 4 Latin square with four periods of 21 days. Forage and concentrate mixtures were fed at 0800 and 2000 h daily. Ruminal fluid was collected every 2 h over a 12-h period on day 19 of each experimental period and pH was measured immediately. Samples were prepared for analyses of concentrations of volatile fatty acids (VFA) by GLC and ammonia. Counts of total and individual bacterial groups (cellulolytic, proteolytic, amylolytic bacteria and total viable bacteria) were performed using the roll-tube technique, and protozoa counts were measured via microscopy in ruminal fluid collected at 0, 4 and 8 h after the morning feeding. Content of ruminal digesta was obtained via the rumen cannula before the morning feeding and used immediately for DNA extraction and quantity of specific bacterial species was obtained using real- time PCR. Ruminal pH did not differ but total VFA (110 v. 105 mmol/l) were lower (P < 0.05) with oil supplementation compared with C. Concentration of ruminal NH3-N (4.4 v. 5.6 mmol/l) was greater (P < 0.05) due to oil compared with C. Compared with C, oil supplementation resulted in lower (P < 0.05) cellulolytic bacteria (3.25 × 108 v. 4.66 × 108 colony-forming units (CFU)/ml) and protozoa (9.04 × 104 v. 12.92 × 104 cell/ml) colony counts. Proteolytic bacteria (7.01 × 108 v. 6.08 × 108 CFU/ml) counts, however, were greater in response to oil compared with C (P < 0.05). Among oil treatments, the amount of Butyrivibrio fibrisolvens, Fibrobacter succinogenes and Ruminococcus flavefaciens in ruminal fluid was substantially lower (P < 0.05) when L was included. Compared to C, the amount of Ruminococcus albus decreased by an average of 40% regardless of oil level or type. Overall, the results indicate that some ruminal microorganisms, except proteolytic bacteria, are highly susceptible to dietary unsaturated fatty acids supplementation, particularly when linolenic acid rich oils were fed. Dietary oil effects on ruminal fermentation parameters seemed associated with the profile of ruminal microorganisms.  相似文献   

10.
The effect of nisin (in the form of Nisaplin) was determined using two species of rumen ciliate protozoa in vitro, on their co-culture bacterial population, and volatile fatty acid concentration. Nisaplin did not affect the in vitro growth of Entodinium caudatum at concentrations of 50-400 mg/L during short-term treatment (5 d). Long-term application (30 d) of Nisaplin (100 mg/L) significantly decreased growth of the Epidinium ecaudatum forma caudatum et ecaudatum but not growth of E. caudatum. Nisaplin moderately supported the growth of E. caudatum after omission of wheat gluten (source of amino acids for protozoan growth). An inhibition of Gram-positive facultative anaerobic bacterial population in the protozoan cultures (lactobacilli, enterococci, staphylococci and amylolytic streptococci) was observed during long-term Nisaplin treatment. The concentration of volatile fatty acids significantly increased during the long-term Nisaplin treatment of both cultures. The propionate concentration in the mixture of volatile fatty acids was nearly twice higher on the account of the decreased concentration (from 74 to 63%) of acetate.  相似文献   

11.
Abstract

The objective of the study was to investigate the influence of two roughage-to-concentrate ratios, with or without linseed oil supplementation, on the flow of fatty acids in the intestinal chyme and the secretion in milk fat in late lactating cows. Seven late lactating cows fitted with cannulae in the dorsal rumen and simple T-shaped cannulae in the proximal duodenum were randomly assigned to four experimental periods applying an incomplete replicated 2×2 Latin square design. The rations consisted of meadow hay and a concentrate mixture given in a ratio of 70 : 30 or 30 : 70 on dry matter basis. The basal rations were fed without or with 200 g linseed oil daily. After three weeks of adaptation, samples from the duodenal chyme were taken to study the flow of fatty acids. Additionally, milk samples were analysed for their milk fat composition. Decreasing roughage/concentrate ratio and linseed oil supplementation significantly increased the flow of monounsaturated fatty acids (MUFA), trans-fatty acids (tFA) and conjugated linoleic acids (CLA) in the duodenum. Furthermore, linseed oil increased the flow of saturated fatty acids (SFA) in the duodenum. Higher concentrate portion (H 30) and linseed oil supplementation significantly decreased the milk fat content. SFA were lower (p < 0.05) and MUFA were higher (p < 0.05) in milk fat after linseed oil supplementation; H 30 resulted in more polyunsaturated fatty acids (PUFA, p < 0.05) in the milk. Linseed oil supplementation significantly increased tFA and CLA in milk fat. The higher CLA content in milk fat as compared to that in the digesta suggests that a substantial endogenous synthesis of CLA in the mammary gland tissue through Δ9-desaturase took place. Between 21% and 48% of duodenal t11-C18:1 were converted into c9, t11-CLA in milk fat.  相似文献   

12.
It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/ g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.  相似文献   

13.
Oxidation products of linseed oil were produced by impinging a stream of air onto the surface of pure linseed oil and injecting the vapor-laden air into soil percolation columns to enrich the population of bacteria capable of degrading linseed oil vapors. As the populations of bacteria increased, the linseed oil vapors were consumed by these organisms, and the air that emerged from the columns was free of linseed oil contaminants. Five different kinds of bacteria capable of growing on the linseed oil oxidation products as sole source of carbon and energy were found and isolated in pure culture. Chromatographic analyses showed that individual organisms removed specific components of the vapor at specific rates, but none was able to remove them all within a 30-day period of time. When the five were grown together and presented the linseed oil vapor, all vapor constituents were utilized, and the rate of utilization was greater than that seen when the isolates were tested in pure culture. This indicated that the five organisms operated as a bacterial consortium in the degradation of linseed oil vapors. Trickling biofilters prepared from pregrown populations of the five organisms challenged with linseed oil vapors were able to remove all volatile constituents found in linseed oil vapor. Bioremediation of the air was complete and it was accomplished in a single pass of the air through the filter.

This work shows that bacteria found in the soil are capable of degrading linseed oil vapors and that they can be grown in the laboratory and used successfully in bench scale trickling biofilters.  相似文献   

14.
Colony counts which approximated those in a habitat-simulating, rumen fluid-agar medium (RFM) were obtained in medium 10, a medium identical to the RFM except for the replacement of rumen fluid with 1.5 x 10(-6)m hemin, 0.2% Trypticase, 0.05% yeast extract, and a 6.6 x 10(-2)m volatile fatty acid mixture qualitatively and quantitatively similar to that in rumen fluid. Single deletion of Trypticase, yeast extract, or the volatile fatty acid mixture from medium 10 significantly reduced colony counts. Colony counts were also reduced when medium 10 was modified to contain higher concentrations of Trypticase or volatile fatty acids. Significant differences were found between colony counts obtained from diluted rumen contents of animals fed a cracked corn-urea diet, and the colony counts obtained from animals fed either a cracked corn-soyean oil meal or an alfalfa hay-grain diet. Qualitative differences were found between the predominant bacterial strains isolated from rumen contents of animals fed cracked corn diets and strains isolated from animals fed alfalfa hay-grain. Regardless of differences in the predominant flora associated with diet, medium 10 and the RFM supported growth of similar bacterial populations. The results show that medium 10 is suitable for enumeration and isolation of many predominant rumen bacteria.  相似文献   

15.
Milk fat composition can be modulated by the inclusion of lipid supplements in ruminant diets. An interaction between the lipid supplement and the forage to concentrate ratio or the type of forage in the rations may affect milk fat composition. However, little is known about the effects of the starch-to-non-forage NDF ratio in the concentrate and lipid supplementation of goat diets. The aim of this work was to determine the role of dietary carbohydrates in goats rations supplemented with linseed oil on animal performance and milk fatty acid (FA) profile. A total of 16 dairy goats were allocated to two simultaneous experiments (two treatments each), in a crossover design with four animals per treatment and two experimental periods of 25 days. In both experiments alfalfa hay was the sole forage and the forage to concentrate ratio (33:67) remained constant. The concentrate in experiment 1 consisted of barley, maize and soybean meal (concentrate rich in starch), whereas it included soybean hulls replacing 25% of barley and 25% maize in experiment 2 (concentrate rich in NDF). As a result, the starch-to-non-forage NDF ratio was 3.1 in experiment 1 and it decreased to 0.8 in experiment 2. Both concentrates were administered either alone or in combination with 30 g/day of linseed oil. Animal performance parameters were not affected by experimental treatments. In contrast, major changes were observed in milk FA profile due to lipid supplementation and the type of concentrate. Linseed oil significantly raised vaccenic and rumenic acids as well as α-linolenic acid and its biohydrogenation intermediates while decreased medium-chain saturated FA (12:0 to 16:0) in milk fat. Milk fat contents of odd and branched-chain FA and trans-10 18:1 responded differently to linseed oil supplementation according to the concentrate fed.  相似文献   

16.
Fat supplementation plays an important role in defining milk fatty acids (FA) composition of ruminant products. The use of sources rich in linoleic and α-linolenic acid favors the accumulation of conjugated linoleic acids isomers, increasing the healthy properties of milk. Ruminal microbiota plays a pivotal role in defining milk FA composition, and its profile is affected by diet composition. The aim of this study was to investigate the responses of rumen FA production and microbial structure to hemp or linseed supplementation in diets of dairy goats. Ruminal microbiota composition was determined by 16S amplicon sequencing, whereas FA composition was obtained by gas-chromatography technique. In all, 18 pluriparous Alpine goats fed the same pre-treatment diet for 40±7 days were, then, arranged to three dietary treatments consisting of control, linseed and hemp seeds supplemented diets. Independently from sampling time and diets, bacterial community of ruminal fluid was dominated by Bacteroidetes (about 61.2%) and Firmicutes (24.2%) with a high abundance of Prevotellaceae (41.0%) and Veillonellaceae (9.4%) and a low presence of Ruminococcaceae (5.0%) and Lachnospiraceae (4.3%). Linseed supplementation affected ruminal bacteria population, with a significant reduction of biodiversity; in particular, relative abundance of Prevotella was reduced (−12.0%), whereas that of Succinivibrio and Fibrobacter was increased (+50.0% and +75.0%, respectively). No statistically significant differences were found among the average relative abundance of archaeal genera between each dietary group. Moreover, the addition of linseed and hemp seed induced significant changes in FA concentration in the rumen, as a consequence of shift from C18 : 2n-6 to C18 : 3n-3 biohydrogenation pathway. Furthermore, dimethylacetal composition was affected by fat supplementation, as consequence of ruminal bacteria population modification. Finally, the association study between the rumen FA profile and the bacterial microbiome revealed that Fibrobacteriaceae is the bacterial family showing the highest and significant correlation with FA involved in the biohydrogenation pathway of C18 : 3n-3.  相似文献   

17.
Changing the diet of five lactating cows and one nonlactating cow from high to low roughage induced milk fat depression in the lactating cows and altered the composition of the rumen microflora. While the numbers of lactic and propionic acid-producing bacteria increased, the numbers of Butyrivibrio spp. decreased. The numbers of lipolytic bacteria and the in vitro lipolytic activity of the rumen fluid were also decreased, as was the extent of hydrogenation of linoleic and linolenic acids combined in soybean oil incubated in vitro with rumen fluid. It is suggested that among the bacterial population in the rumen the vibrios, which were adversely affected by the low-roughage diets, may contribute significantly to both lipolysis and hydrogenation in the rumen.  相似文献   

18.
Nutritional interdependence among three representatives of rumen bacteria, Bacteroides amylophilus, Megasphaera elsdenii, and Ruminococcus albus, was studied with a basal medium consisting of minerals, vitamins, cysteine hydrochloride, and NH4+. B. amylophilus grew well in the basal medium supplemented with starch and produced branched-chain amino acids after growth ceased. When cocultured with B. amylophilus in the basal medium supplemented with starch and glucose, amino acid-dependent M. elsdenii produced an appreciable amount of branched-chain fatty acids, which are essential growth factors for cellulolytic R. albus. A small addition of starch (0.1 to 0.3%) to the basal medium containing glucose and cellobiose brought about successive growth of the three species in the order of B. amylophilus, M. elsdenii, and R. albus, and successive growth was substantiated by the formation of branched-chain amino acids and fatty acids in the culture. Supplementation with 0.5% starch, however, failed to support the growth of R. albus. On the basis of these results, the effects of supplementary starch or branched-chain fatty acids on cellulose digestion in the rumen was discussed.  相似文献   

19.
Spray-dried milk enriched with n-3 fatty acids from linseed oil (LSO) or fish oil (FO) were fed to rats to study its influence on liver lipid peroxides, hepatic antioxidant enzyme activities, serum prostaglandins and platelet aggregation. Significant level of α linolenic acid, eicosapentaenoic acid and docosahexaenoic acid were accumulated at the expense of arachidonic acid in the liver of rats fed n-3 fatty acid enriched formulation. The linseed oil and fish oil enriched formulation fed group had 44 and 112% higher level of lipid peroxides in liver homogenate compared to control rats fed groundnut oil enriched formulation. Catalase activity in liver homogenate was increased by 37 and 183% respectively in linseed oil and fish oil formulation fed rats. The glutathione peroxidase activity decreased to an extent of 25–36% and glutathione transferase activity increased to an extent of 34–39% in rats fed n-3 fatty acids enriched formulation. Feeding n-3 fatty acid enriched formulation significantly elevated the n-3 fatty acids in platelets and increased the lipid peroxide level to an extent of 4.2 to 4.5-fold compared to control. The serum thromboxane B2 level was decreased by 35 and 42% respectively in linseed oil and fish oil enriched formulation fed rats, whereas 6-keto-prostaglandin F1α level was decreased by 17 and 23% respectively in linseed oil and fish oil enriched formulation fed rats. The extent and rate of platelet aggregation was decreased significantly in n-3 fatty acids enriched formulation fed rats. This indicated that n-3 fatty acids enriched formulation beneficially reduces platelet aggregation and also enhances the activities of hepatic antioxidant enzymes such as catalase and glutathione transferase.  相似文献   

20.
ABSTRACT. Concentration and composition of ciliate protozoa in the families Ophryoscolecidae and Isotrichidae were determined in rumen contents of domestic sheep ( Ovis ammon aries ) from Cyprus. A total of five genera of Ophryoscolecidae were identified, Metadinium, Enoploplastron, Polyplastron, Epidinium , and Ophryoscolex , which included six species: Metadinium affine, Enoploplastron triloricatum, Polyplastron multivesiculatum, Epidinium ecaudatum, Epidinium graini, and Ophryoscolex purkynjei. Eight separate forms of Epidinium were identified ( E. ecaudatum f. ecaudatum, E, e. f. caudatum, E. e. f. bicaudatum, E. e. f. tricaudatum, E. e. f. quadricaudatum, E. graini f. graini, E. g. f. caudatricoronatum , and E. g. f. caudaquadricoronatum ), along with five forms of Ophryoscolex purkynjei (O. p. f. purkynjei, O. p. f. bifidobicinctus, O. p. f. bifidoquadricinctus, O. p. f. bicoronatus, O. p. f. tricoronatus , and O. p. f. quadricoronatus). Three species of Isotrichidae were observed, Isotricha intestinalis, I. prostoma , and Dasytricha ruminantium. This study reports new host records for three forms of Epidinium graini and Ophryoscolex purkynjei f. bifidobicinctus. The rumen fauna in the family Ophryoscolecidae from Cypriote domestic sheep appear to have limited diversity compared to those from Turkish and Far Eastern (Chinese/Japanese) sheep, while they are more diverse than those found in Western European (Scottish) and North American (Canadian/Alaskan) sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号